Top-Down Versus Bottom-Up Control of Attention in the Prefrontal and Posterior Parietal Cortices

Timothy J. Buschman and Earl K. Miller*

Attention can be focused volitionally by “top-down” signals derived from task demands and automatically by “bottom-up” signals from salient stimuli. The frontal and parietal cortices are involved, but their neural activity has not been directly compared. Therefore, we recorded from them simultaneously in monkeys. Prefrontal neurons reflected the target location first during top-down attention, whereas parietal neurons signaled it earlier during bottom-up attention. Synchrony between frontal and parietal areas was stronger in lower frequencies during top-down attention and in higher frequencies during bottom-up attention. This result indicates that top-down and bottom-up signals arise from the frontal and sensory cortex, respectively, and different modes of attention may emphasize synchrony at different frequencies.

Volitional shifts of attention are thought to depend on “top-down” signals derived from knowledge about the current task (e.g., finding your lost keys), whereas the automatic “bottom-up” capture of attention is driven by properties inherent in stimuli—that is, by salience (e.g., a flashing fire alarm) (I–3). Imaging and neurophysiological studies have found neural correlates of both types in the frontal and posterior parietal cortices (I, 2, 4–6), but their respective contributions are not clear; they have largely been studied in separate experiments, rendering comparisons difficult and obscuring timing differences that could give clues to information flow (7).

We therefore recorded from multiple electrodes simultaneously implanted in the frontal and parietal cortices as monkeys (Macaca mulatta) found a visual target under two conditions (Fig. 1A). The target was randomly located in an array of four stimuli, with conditions differing in how the distractors related to the target. In “pop-out,” the distractors were identical and differed from the target along two dimensions (color and orientation), so the target’s salience automatically drew attention to it (1–3). During “search,” each distractor independently differed from the target. Because the target matched some of the distractors in each dimension, it was not salient and had to be sought using only its remembered appearance (I–3). The monkeys showed the behavioral hallmarks of bottom-up versus top-down attention. Psychophysical testing showed a shallower increase in reaction time with more distractors during pop-out than during search (6 ms per item for pop-out, 22 ms per item for search; P < 0.001, t test of least-squares linear regression). During recording, when three distractors were always presented, the monkeys’ reaction time was significantly longer and more variable for search than for pop-out (Fig. 1B).

We focused on the lateral intraparietal area (LIP) in the parietal cortex and the lateral prefrontal cortex (LPFC) and frontal eye fields (FEF) in the frontal cortex (I, 2, 4–6, 8–11). For each recording session, we implanted up to 50 electrodes (25 in frontal and 25 in parietal cortex). We recorded the activity of 802 neurons over 24 sessions (12).

We determined when each neuron first “found” (reflected) the target location by computing when the amount of information in its firing rate about target location first reached significance (13). The data for each trial were grouped by condition (pop-out or search) and by target location, thus factoring out information about target features. The top row of Fig. 2 shows the distribution of these times relative to the start of the saccade. During pop-out, there was a bimodal distribution (Fig. 2A). For each area, there was a population of neurons that first found the target well before the saccade (i.e., shortly after visual array onset) and a separate population that found the target after the saccade. The early population consisted of 35% of all target location–selective LIP neurons (24/68), 51% of selective LPFC neurons (40/78), and 31% of selective FEF neurons (17/54). There were clear differences in timing: LIP neurons found the target first, followed by LPFC neurons and then FEF neurons. Fits of bimodal Gaussians (Fig. 2A) indicated that the early population of LIP neurons was centered at 162 ms before the saccade [95% confidence interval (CI), 200 to 124 ms], followed by the early populations in LPFC and FEF, 77 ms (95% CI, 84 to 70 ms) and 40 ms (95% CI, 56 to 23 ms) before the saccade, respectively (LIP < PFC, P < 10⁻⁵; LIP < FEF, P = 6 × 10⁻³; PFC < FEF).

Fig. 1. (A) Behavioral task comparing visual search and pop-out. Red circle indicates eye position. (B) Histogram of reaction times (RTs) during search and pop-out tasks across all recording sessions for one target and three distractors. Average RTs for search (272 ms) and pop-out (233 ms) differed significantly (P < 10⁻⁵, t test). The variance in RT also differed significantly (SDs of 43 ms for search and 33 ms for pop-out, P < 10⁻⁵, χ² test).

*To whom correspondence should be addressed. E-mail: ejkmiller@mit.edu
The distribution of the neurons that found the target after the saccade was overlapping in all three areas and centered about 100 ms after saccade (Fig. 2A).

The same ordering was seen in the cumulative distributions of these data (Fig. 2C) (14). LIP, LPFC, and FEF neurons began finding the target 170 ms, 120 ms, and 35 ms before saccade, respectively (LIP < PFC, target 170 ms, 120 ms, and 35 ms before LIP, LPFC, and FEF neurons began finding the target). The cumulative distributions in Fig. 2D show that target location information reached significance in the FEF and LPFC at 50 and 40 ms before the saccade, respectively, followed by LIP (LPFC and FEF were earlier than LIP, P = 0.027 and P = 0.006, respectively; randomization test) (12). Whereas during pop-out, the LIP neurons found the target first (and well before the saccade); during search, target location information in LIP did not reach significance until 32 ms after the saccade. As with pop-out, similar results were observed when trials were aligned on visual array onset (12).

In the search task, neurons began finding the target later than in pop-out, just before the saccade, and in the reverse order: The frontal areas (LPFC and FEF) showed selectivity first, followed by LIP (Fig. 2, B and D). About one-third of all selective neurons in FEF and LPFC tended stimuli (15–19). To investigate this, we quantified the degree of synchrony between local field potentials (LFPs) in the parietal and frontal cortices. Synchrony was measured between all pairs of simultaneously recorded electrodes that had at least one neuron selective for target location (282 pairs). The degree of synchrony was captured in the coherence statistic, a measure of the co-spectrum of LFPs. The degree of synchrony was calculated around the time of the attention shift (in a perisaccadic period, beginning 150 ms before saccade to 50 ms afterward) and compared to a baseline, an intertrial interval (ITI) epoch (a 200-ms window starting 500 ms before trial onset). Shaded regions are 95% confidence intervals around average coherence. Frequencies below 10 Hz are not meaningful (and are not shown) because of the age coherence. Frequencies above 10 Hz are not meaningful (and are not shown) because of the relatively short time epochs used.

Fig. 3. LFP coherence between LIP and frontal cortex (LPFC and FEF) across frequencies for (A) pop-out and (B) search tasks. Coherence was calculated around the time of the attention shift (in a perisaccadic period, beginning 150 ms before saccade to 50 ms afterward) and compared to a baseline, an intertrial interval (ITI) epoch (a 200-ms window starting 500 ms before trial onset). Shaded regions are 95% confidence intervals around average coherence. Frequencies below 10 Hz are not meaningful (and are not shown) because of the relatively short time epochs used.

Fig. 2. Timing of target location selectivity during pop-out (left column) and search (right column). Significance was determined through randomization tests (12). (A and B) Distribution of times at which neurons first began to carry significant information about the target location, relative to the saccade. Vertical black line indicates saccade; gray shaded regions indicate mean (±1 SD) of distribution of visual array onset. (C and D) Normalized cumulative sums of the histograms shown in (A) and (B), respectively. A z-score for the observed distribution was calculated through randomization tests and was corrected for multiple comparisons (12).
Localized synchrony of activity within a brain area may help resolve competition for attentional selection (18, 19), and interareal synchrony may aid in long-range communication between areas (15–17). Our results suggest that the flow of top-down and bottom-up information is aided by coherence emphasizing different frequency bands. Lower-frequency bands are more robust to spike timing delays and thus may be better suited for longer-range coupling between multiple, distant areas (28–30). The increase in low-frequency synchrony during search could reflect a “broadcast” of top-down signals on a larger anatomical scale. Synchrony at higher-frequency bands might support the local interactions needed to enhance stimulus representations (28–30). The emphasis of higher-frequency synchrony during pop-out could reflect local enhancement of stimulus representations that are passed forward from parietal to frontal cortex. This suggests that the brain may emphasize coherence at different frequency bands for the dynamic modulation of interareal connections, which in turn engages the network best suited for the current task.

Fig. 4. (A) Level of coherence for pop-out and search during the middle (left, 22 to 34 Hz) and upper (right, 35 to 55 Hz) frequency bands in different trial epochs. *P < 0.05, **P < 0.01 (t test). (B) Differences in LFP coherence between LIP and frontal cortex during pop-out and search for the perisaccadic period (green) and ITI (black). Pop-out coherence was subtracted from search coherence (Fig. 3). Dashed lines indicate significance levels (P < 0.05, corrected for multiple comparisons). Differences above the upper dashed line indicate significantly more coherence during search than during pop-out; differences below the lower dashed line denote significantly more coherence during pop-out than during search.

References and Notes
12. See supporting material on Science Online.
13. A sliding window of 25 ms was stepped every 25 ms. Significance was determined by constructing a null distribution through randomization tests (12). A neuron was said to first indicate the target location when significant at P = 0.05 for two bins in a row.
14. The cumulative distribution is the cumulative sum of the histogram of when each cell first carried significant information about the target location (Fig. 2, top row). The cumulative sum was then normalized for the number of significant cells expected at each point in time by chance. This procedure corrected for multiple comparisons and determined when an area carried information about the target location, allowing us to infer the order of selectivity. See (12) for details.
31. Supported by NSF grant SBE0354378 and National Institute of Neurological Disorders and Stroke grant RO1NS053145. We thank S. Henriksson, J. Roy, and M. Wicherski for comments on the manuscript; W. Asaad and K. Macculla for technical and other support; and E. N. Brown for help with the statistical analyses.

Supporting Online Material
www.sciencemag.org/cgi/content/full/315/5820/1860/DC1
Materials and Methods
Figs. S1 to S5
Table S1
28 November 2006; accepted 7 March 2007
10.1126/science.1138071