Sophie Molholm, Ph.D., is a professor of pediatrics, of psychiatry and behavioral sciences and in the Dominick P. Purpura Department of Neuroscience at Albert Einstein College of Medicine, and the associate director of the Rose F. Kennedy Intellectual and Developmental Disabilities Research Center and director of the Human Clinical Phenotyping Core. Her lab uses psychophysics, high-density electrophysiology and neuroimaging in conjunction with clinical and cognitive assessments to probe the brain processes underlying perception and cognition in healthy and clinical groups. Her current work focuses on understanding the neurobiological underpinnings of autism and rare disorders such as 22q11.2 deletion syndrome and Rett syndrome.

Theodore A. Kastner, M.D., is the Ruth L. Gottesman Chair in Developmental Pediatrics and the director of the Rose F. Kennedy Children’s Evaluation and Rehabilitation Center, whose mission is to improve the quality of life of people with intellectual and developmental disabilities and their families. He is also the director of the Rose F. Kennedy University Center for Excellence in Developmental Disabilities and the Leadership in Neurodevelopmental Disabilities fellowship. Dr. Kastner is a leading authority in the care of people with autism, cerebral palsy, Down syndrome and other intellectual and developmental disabilities and for years maintained a private practice in developmental pediatrics.

Lisa H. Shulman, M.D., is a professor of pediatrics at Albert Einstein College of Medicine and the director of Einstein’s Infant/Toddler Services at the Rose F. Kennedy Children’s Evaluation and Rehabilitation Center (CERC). In this capacity, Dr. Shulman directs CERC’s RELATE (Rehabilitation, Evaluation and Learning for Autistic Infants and Toddlers at Einstein) program, which offers evaluation and treatment for young children with autism and autism spectrum disorders. She is highly experienced and regarded as a developmental pediatrician. Her research interests include early identification of autism; healthcare disparity in autism diagnosis and management; and the use of complementary and alternative medicine in treating autism.

Rebecca Jones, Ph.D., is an assistant professor of neuroscience in the department of psychiatry at Weill Cornell Medicine. Her work bridges clinical, neuroimaging and engineering research to study the human social brain in typical and atypical development. Dr. Jones uses behavioral, brain imaging and mobile technologies to discover how social behavior develops and can go awry in developmental disorders (e.g., autism). She applies a neurodevelopmental framework to augment and support her interpretation of behavior changes across ages and in atypical development. In collaboration with Dr. Jonathan Power, she is now studying the underlying neural circuitry of restricted interests in individuals with autism spectrum disorders.

Helen Tager-Flusberg, Ph.D., is a professor in the departments of psychological and brain sciences, of anatomy and neurobiology and of pediatrics at Boston University, where she also directs the Center for Autism Research Excellence. Her research interests are language impairment in autism, Williams syndrome and Down syndrome, which she has studied since the late 1970s. She was president of the International Society for Autism Research (2011–2013) and served on the National Deafness and Other Communication Disorders Advisory Council (2012–2016). She is on the editorial boards of Autism and Autism Research, and is associate editor of the British Journal of Psychology and the Journal of Neurodevelopmental Disorders.

Michael Crosse, Ph.D., is a postdoctoral research fellow in the Sheryl and Daniel R. Tishman Cognitive Neurophysiology Laboratory in the department of pediatrics at Albert Einstein College of Medicine. His research focuses on how dynamic multisensory signals, such as audiovisual speech, are encoded and integrated in typical and atypical human brains. Trained in neural engineering at Trinity College Dublin, Dr. Crosse is currently applying novel system-identification techniques to investigate the neural basis of impaired multisensory processing in children with autism, using high-density electrophysiological recordings, psychophysics and machine learning.
So Hyun “Sophy” Kim, Ph.D., is an assistant professor at the Center for Autism and the Developing Brain at Weill Cornell Medical College. Dr. Kim is a clinical researcher with an extensive background in the identification of early behavioral phenotypes and developmental trajectories of children with autism spectrum disorders (ASD). She has developed a new language-assessment tool, the Observation of Spontaneous Expressive Language, now undergoing a national norm in partnership with the publisher WPS. She has also led the development of a new treatment outcome measure for ASD, the Brief Observation of Social Communication Change, in collaboration with Dr. Catherine Lord. Her current research focus is on examining the mechanisms of early, parent-mediated interventions for toddlers with ASD.

John J. Foxe, Ph.D., holds the Killian and Caroline F. Schmitt Chair in Neuroscience at the University of Rochester, where he serves as director of the Ernest J. Del Monte Institute for Neuroscience. He is also the chair of the department of neuroscience and the director of the University of Rochester Center for Advanced Brain Imaging and Neurophysiology, and holds a visiting professorship at Albert Einstein College of Medicine. Dr. Foxe is a translational researcher with more than 20 years’ experience studying developmental disorders such as schizophrenia and autism with the use of psychophysics and brain-imaging tools. The core mission of his research is to understand the underlying biological mechanisms of these diseases, with the goal of developing more-effective treatments and interventions.

Renata A. Batista-Brito, Ph.D., is an assistant professor in the Dominick P. Purpura Department of Neuroscience and in the department of genetics at Albert Einstein College of Medicine. Dr. Batista-Brito’s research focuses on understanding how postnatal development of GABAergic inhibition shapes sensory representation in the mature brain, and how this process is altered in neurodevelopmental disorders. Methods employed by her lab to investigate these issues include cell-type specific manipulation of neuronal activity, in vivo electrophysiology, in vivo 2-photon imaging and behavioral analysis.

Noboru Hiroi, Ph.D., is a professor of psychiatry and behavioral sciences, and an associate professor of genetics, at Albert Einstein College of Medicine. His laboratory focuses on the genetic, cellular and molecular mechanisms of developmental neuropsychiatric disorders. Dr. Hiroi is interested in improving understanding of the fundamental causes of developmental disorders such as autism and schizophrenia. Current projects include investigating the role of the enzyme COMT in hippocampal synaptic plasticity, and that of Tbx1, a 22q11.2 gene associated with autism spectrum disorder, in regulating adult neurogenesis in the dentate gyrus; epigenetic modification of CNV-encoded genes; and computational analysis of neonatal communication.

Eric Hollander, M.D., is a professor of psychiatry and behavioral sciences at Albert Einstein College of Medicine and director of the Autism and Obsessive Compulsive Spectrum Program and the Anxiety and Depression Program at Montefiore Medical Center. In addition to maintaining his clinical practice, Dr. Hollander is involved in research on the neuropharmacology, neuropsychiatry, functional imaging and treatment of obsessive-compulsive disorder, impulsive-aggressive disorders and obsessive-compulsive-related disorders such as body dysmorphic disorder, pathological gambling, Prader-Willi syndrome and autism.

Shlomit Beker, Ph.D., is a postdoctoral research fellow in the Sheryl and Daniel R. Tishman Cognitive Neurophysiology Laboratory in the department of pediatrics at Albert Einstein College of Medicine. Dr. Beker investigates the correlates of abnormal information processing found in neuro-oscillations. Her current research focuses on probing the neuronal dynamics underlying inflexibility in autism spectrum disorders (ASD). In this framework, the processes of interest are the ability of individuals with ASD to make temporal predictions about their environments and to adapt to novel stimuli and patterns. The investigations involve EEG measurements of the temporal dynamics that are critical to normal functioning, as well as pupillometry and psychophysics.