Title: B cell-mediated maintenance of CD169+ cells is critical for liver regeneration

Kristina Behnke1*, Yuan Zhuang1*, Haifeng C. Xu1, Balamurugan Sundaram1, Maria Reich2, Prashant V. Shinde1, Jun Huang1, Nastaran Fazel Modares4, Alexei V. Tumanov3, Robin Polz4, Jürgen Scheller4, Carl F. Ware5, Klaus Pfeffer6, Verena Keitel2, Dieter Häussinger2, Aleksandra A. Pandyra2, Karl S. Lang7+, and Philipp A. Lang1+, #

1Department of Molecular Medicine II, Medical Faculty, Heinrich Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany, 2Department of Gastroenterology, Hepatology, and Infectious Diseases, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany, 3Department of Microbiology, Immunology & Molecular Genetics, University of Texas Health Science Center, San Antonio, TX 78229, 4Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich Heine University, 40225 Düsseldorf, Germany, 5Infectious and Inflammatory Diseases Research Center, Sanford Burnham Prebys Medical Discovery Research Institute, La Jolla, CA 92037, 6Institute of Medical Microbiology and Hospital Hygiene, University Hospital, Heinrich-Heine-University, Düsseldorf, Germany, 7Institute of Immunology, Medical Faculty, University of Duisburg-Essen, Hufelandstr. 55, Essen 45147, Germany.

Key words: partial hepatectomy, liver regeneration, B cells, lymphotoxin beta
* contributed equally to this work.
+ contributed equally to this work.

#Address correspondence to Philipp A Lang, M.D., Ph.D.
Department of Molecular Medicine II, Medical Faculty, Heinrich Heine University, Universitätsstr.1, 40225 Düsseldorf, Germany.
Tel: +49 2118113580
Email: langp@uni-duesseldorf.de

Abbreviations: ALT: alanine amino transferase; AST: aspartate amino transferase; DT: diphtheria toxin; DTR: diphtheria toxin receptor; CD169-DTR-DT: DT treated CD169-DTR; EGF: epidermal growth factor; HE: Hematoxylin and eosin stain; IL6: Interleukin 6; Lt: lymphotoxin; PCNA: proliferating cell nuclear antigen; PHx: partial hepatectomy; phospho-H3: phospho-Histone H3; S: splenectomy; Stat3: Signal transducer and activator of transcription 3; TGFβ: Transforming growth factor beta; TNFα: Tumor necrosis factor alpha; TUNEL: Terminal deoxynucleotidyl transferase (TdT) dUTP Nick-End Labeling; WT: wild type.

This study was supported by the German Research Council (SFB974, KFO217, LA-2558/5-1). Furthermore, this study was supported by the Jürgen Manchot Graduate School MOI III.
Abstract

The liver has an extraordinary capacity to regenerate via activation of key molecular pathways. However, central regulators controlling liver regeneration remain insufficiently studied. Here we show that B cell-deficient animals failed to induce sufficient liver regeneration after partial hepatectomy (PHx). Consistently, adoptive transfer of B cells could rescue defective liver regeneration. B cell mediated lymphotoxin beta production promoted recovery from PHx. Absence of B cells coincided with loss of splenic CD169+ macrophages. Moreover, depletion of CD169+ cells resulted in defective liver regeneration and decreased survival, which was associated with reduced hepatocyte proliferation. Mechanistically, CD169+ cells contributed to liver regeneration by inducing hepatic IL-6 production and STAT3 activation. Accordingly, treatment of CD169+ cell depleted animals with IL-6/Il-6R rescued liver regeneration and severe pathology following PHx. In conclusion, we identified CD169+ cells to be a central trigger for liver regeneration, by inducing key signaling pathways important for liver regeneration.
Introduction

Liver disease is a global health problem with millions of patients worldwide suffering from infections, toxic liver damage and hepatocellular carcinoma. Liver tissue has an extraordinary potential to regenerate, an effect already described in greek mythology. Since then, several key molecular pathways have been discovered to play important roles during liver regeneration, including NF-κB, STAT3, and Erk(1). Following 70% reduction of liver mass through partial hepatectomy (PHx) tumor necrosis factor (TNF) is rapidly produced and TNF receptor 1 (TNFR1) signaling is required to induce liver regeneration(2). Furthermore, the TNF superfamily members lymphotoxin alpha and lymphotoxin (Lt) beta play a critical role during liver regeneration(3, 4). Consistently, mice deficient for both, TNFRp55 and Ltβ receptor show delayed hepatocyte proliferation, and impaired survival following PHx(5). Furthermore, a markedly increase in IL-6 concentrations in the serum can be detected following loss of liver mass, and IL-6 deficient mice show delayed liver regeneration following PHx(6-8). Consistently, treatment with combined IL-6 and soluble IL6 receptor can improve liver regeneration and induce rapid hepatocyte proliferation(6, 9).

Moreover, epidermal growth factor (EGF) receptor ligands including TGF-α and amphiregulin are able to induce hepatocyte proliferation in vitro(1, 10). However, TGF-α deficient animals exhibit normal recovery following PHx(11). In turn, amphiregulin deficient animals show delayed proliferation following loss of liver mass(12). Consistently, specific deletion of EGFR in hepatocytes resulted into decreased liver regeneration following PHx(13). Notably, TNF levels were strikingly increased in EGFR^{ΔHEP} animals following PHx, suggesting that factors important for liver regeneration can compensate for each other(13). Central key players during liver regeneration however, remain still insufficiently studied.
The spleen is tightly connected to the liver with important blood circuits. Receiving its blood from the splenic artery, it feeds via the splenic vein after joining of the arteria mesenteria inferior and superior into the portal vein. Hence, cytokines and chemokines produced in the spleen can act directly on the liver. The spleen itself is organized in the red and white pulp, with the separating marginal zone including the marginal sinus in between (14, 15). B cells account for about 50% of all cells in the spleen and are located in the white pulp and the marginal zone(14). B cells are critical for organization of the lymphoid tissue, as B cell-deficient mice exhibit reduced presence of metallophilic CD169⁺ macrophages (16). CD169⁺ cells are located along the marginal sinus and ideally situated to capture pathogens(14, 17). Interestingly, maintenance of CD169⁺ cells depend on Ltα and Ltβ(18-20). Specifically, B- and T-cell-specific Ltβ deficient mice, exhibit reduction of CD169⁺ cells in the spleen (18, 19). Moreover, as spleen resident macrophages, CD169⁺ cells can contribute to cytokine production during inflammation and infection(21-23). However, the contributions of B cells and CD169⁺ cells during liver regeneration remain insufficiently characterized.

In this study, we identified B cells and CD169⁺ cells as important players for liver regeneration following PHx. Specifically, genetic B cell deficiency resulted in reduced signaling cascades required for hepatocyte proliferation and limited survival following PHx. B cell-deficient mice exhibited reduced presence of CD169⁺ cells, which were critical for liver regeneration. Depletion of CD169⁺ cells resulted in reduced IL-6 expression and reduced regeneration following PHx. Consistently, treatment of CD169⁺ cell depleted animals with IL-6/IL-6R could rescue the severe pathology we observed in our setting.
Materials and Methods:

Animals: This study was carried out in accordance with the German Animal Welfare Act and the guidelines of the Shoochow University. The protocol was approved by the local authorities. Baffr−/−, Jh−/−, CD169-DTR mice were described previously and were kept on a C57Bl/6 background(18, 24, 25). Laparotomy was performed predominantly on male mice at 10-14 weeks of age using isoflurane inhalation narcosis as previously described(26). For PHx the left lateral and the left and right median liver lobes together with the gall bladder were excised subsequent to a one-step ligature using a 5-0 silk suture tie (Ethicon, Somerville, NJ) (5). Sham operations were performed in an identical manner without ligating and removing liver lobes. For splenectomy, the splenic artery and vein was ligated with a single knot 5-0 silk suture at the same time as PHx or otherwise indicated in figure legend. Next, connective tissue and spleen was removed. Abdomen and peritoneum was closed with a running 5-0 PDS suture (Ethicon), and the skin with a running 6-0 nylon suture (Ethicon)(26). Directly after surgery and 24 and 48 h post PHx mice received 5 mg/kg Carprofen (Rimadyl, Pfizer, Würselen, Germany). As expected, splenectomized animals did not show any sign of pathology (Fig 1A). Mice exhibiting severe disease symptoms where sacrificed and considered as dead. CD169+ cells in the CD169-DTR animals were depleted by injecting 2 doses of 100ng diphtheria toxin (DT) (Sigma) before the partial hepatectomy (PHx). Wild-type (WT; C57Bl/6) mice were used as controls. Mice were 10-14 weeks old. For blood and tissue collection mice were anesthetized (100 mg/kg Ketamin, 10 mg/kg Xylazine; Vétoquinol GmbH, Ravensburg, Germany), weighed, and bled via the vena cava inferior and serum was collected. The liver and spleen were removed, rinsed in PBS and weighed to calculate the LW/BW ratio and the spleen weight. Liver and spleen samples were stored at -80 °C for Histology, RNA and protein extraction.
LtβR antibody treatment and IL-6/IL-6R injection: In order to induce LtβR signalling, mice were intraperitoneally injected with 2 doses of 200µg an agonist LtβR antibody (clone 4H8) 24h before and 24h after PHx (27). DT treated CD169-DTR mice were injected with 2 doses of 20µg IL-6/IL-6R protein 24h before and immediately after PHx.

Purification of B cells: For B cell purification, single-cell suspensions of splenocytes were enriched following the manufacturer's instructions with a CD45R (B220) MicroBeads mouse kit (Miltenyi).

Histology: Histological analysis on snap frozen tissue (liver, spleen) was performed and stained for hematoxylin/eosin (Sigma-Aldrich, St. Louis, MO, USA) and TUNEL (Terminal deoxynucleotidyl transferase (TdT) dUTP Nick-End Labeling) (Roche). Snap-frozen tissue sections were stained with a CD169 antibody (clone: MOMA-1, ABD Serotec), B220(eBioscience), Ki-67 (abcam), phospho-Histone H3 (Millipore).

Flow cytometry analysis: Different immune populations were identified in single cell solutions from naïve liver and spleen samples and spleen and liver samples newly regenerated (New), remaining lobes (Old) 24, 48 hours after PHx using anti-B220, anti-CD21, anti-CD23, anti-PD-L1, anti-NK1.1, anti-CD3, anti-CD19, anti-CD11b, anti-Siglec-H, anti-CD8a and anti-CD11c antibodies, anti-major histocompatibility complex class II (MHC-II), anti-CD40, anti-CD80, anti-CD86, anti-F4/80, anti-Ly6C, anti-CD138, anti-IgM, anti-CD38, anti-CD62L, anti-CD5, anti-IgD, anti-CD1d antibodies and 7AAD. All antibodies were obtained from eBioscience (San Diego, CA), except anti-CD169 (3D6.112), which was obtained from AbD Serotec (Dusseldorf, Germany). For quantification of cell population, calibration beads were added to assess cell
numbers (BD, San Diego, CA).

Serum biochemistry:

Aspartate aminotransferase (AST, GOT) and alanine aminotransferase (ALT, GPT) were measured using the automated biochemical analyser Spotchem EZ SP-4430 (Arkray, Amstelveen, Netherlands) and the Spotchem EZ Reagent Strips Liver-1.

Quantitative RT-PCR: RNA purification and RT-PCR analyses of liver and spleen were performed according to the manufacturer’s instructions (TRIzol reagent and iTaq™ Universal probes or SYBR Green One-Step Kit, BioRad). Expression of Lta, Ltb, IL-6, TNFα was determined with FAM probes (Applied Biosystems). Expression levels of other genes were tested using the following primer sequences: Egf_F:

AGAAGGCTACGAAGGAGACG; Egf_R: AGAGTCAGGGAACACTACGTC;

Hbegf_F:GCAATGCTCCTCCTGTTAC;Hbegf_F:GGACGACAGTACTACAGC;

Areg_F:GCGAGGATGCAAAAGGACCTA; Areg_R:TCGTTTCCAAAGGTGCAC;

Tgfa_F:GCTCTGGGAAAACAGCAGC; Tgfa_R:ACATGCTTGCCATTTCCTCCT;

Tgb1_F:TTGGCTTCAGCTCCACACAGA;Tgb1_R:CAGAAGTTGGGCTGAGG;

Hgf_F: CCAGAGGTACGCTACGAAAGT; Hgf_R: CTGTGTGATCCCCAGGACCT;

Fgf1_F: CTCGCAGACACATGAGG; Fgf1_R: CTTCTTGAGGCCCAAAAC;

Vegfa_F:TTGGACTCCTGTGGACATC;Vegfa_R:GGGCTTCATCGTTACAGC;

Vegfb_F:GCCACCAGAAGAAATGGTG;Vegfb_R:ATTGCCCAATGAGTCCATGC;

Vegfc_F:AGGCAGCTACAAGCATGGAAC;Vegfc_R:GGGTCCACAGACATGGAATC;

Fgf2_F:GGACGGCTGCTGGCTTCTAA;Fgf2_R:CCAGTTCGTTCTGAGCAG;

CATGGAATC;Fgf2_F:GGACGGCTGCTGGCTTCTAA;Fgf2_R:CCAGTTCGTTCTGAGCAG;

GTGCCACATAC;Pdgfb_F:ATGAAAATGCTGACGAGGACC;Pdgfb_R:TCCCTCGAGATGAGCTTCC; For analysis, the expression levels of all target genes were normalized to the β-actin expression or GAPDH (ΔCt). Gene expression values were calculated with the ΔΔCt method, with untreated WT mice as controls to which all other
samples were normalized. Relative quantities (RQ) were determined with the equation
RQ = 2^{-\Delta \Delta Ct}.

Immunoblotting: Liver tissue was lysed in PBS containing 1% Triton X-100, Protease inhibitors (Sigma), PhosSTOP (1 tablet/10 ml). Immunoblots were probed with primary antibody: Phospho-Stat3, Stat3, Phospho-Erk1/2, Erk1/2, IkBα, IL-6, PCNA and β-actin (Cell Signalling technology), followed by secondary antibody and chemiluminescence (ECL) detection or Florence secondary antibody and detected by LICOR.

Statistical analyses: Data are expressed as mean ± S.E.M. Statistical significant differences between two different groups were analysed using student’s t test. Statistically significant differences between groups in experiments involving more than one time-point were determined with two-way ANOVA (repeated measurements). All the quantifications were analysed by ImageJ.
Results

B cells are important for liver regeneration.

Based on previous data describing a beneficial role of the spleen during liver regeneration following partial hepatectomy (PHx) in mice(28), we found that a proportion of splenectomized C57Bl/6 mice developed severe pathology (Fig. 1A+Suppl. Fig. 1A). Consistently, liver weight/body weight ratio following PHx was reduced in absence of spleen tissue when compared to PHx controls (Fig. 1B)(28). Moreover, alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activity, indicators of liver damage were markedly increased in the blood of splenectomized mice after PHx compared to PHx only or splenectomy controls (Suppl. Fig. 1B). Although splenectomized mice exhibited histological changes in liver tissue, we did not observe a significant increase in TUNEL staining (Suppl. Fig. 1C+D). However, staining for proliferation indicators such as Ki-67 and Phospho-Histone H3 (Phospho-H3) was reduced in liver tissue of splenectomized animals (Fig. 1C+D+Suppl. Fig. 1E). Next, we investigated, which splenic factors may be important for liver regeneration. B cells account for about 50% of all cells in the spleen and are located in the white pulp and the marginal zone (14). However, we did not observe any difference in the presence of B cell subsets following PHx surgery in the spleen and liver (Fig. 1E+Suppl. Fig. 2A-C), while T cell numbers increased in the regenerating liver tissue following PHx, which is consistent with the literature (Suppl. Fig. 2D)(4). Nevertheless, when we subjected B cell deficient Jh^−/− mice to PHx, we found reduced survival following PHx when compared to WT controls (Fig. 1F). This effect was not due to surgery complications or infection, as Sham-operated Jh^−/− mice showed no signs of disease and survived after surgery (Fig. 1F). In contrast to splenectomized mice, B cell-deficient animals did not exhibit increased activity of liver transaminases when
compared to WT controls (Fig. 2A). Consistently, we could not detect histological differences or increased TUNEL staining following PHx in Jh−/− mice compared to WT mice (Fig. 2B + Suppl. Fig. 3A). Deficiency of the B cell survival promoting B cell activating factor of the TNF family (BAFF) results in B cell lymphopenia in mice and man (25, 29). Accordingly, Baffr−/− mice displayed severe disease symptoms following PHx compared to WT and Sham-operated mice (Fig. 2C). In parallel to Jh−/− mice, Baffr−/− animals exhibited only slight increase in liver transaminases and to control liver tissue comparable histological appearance in H&E tissue sections (Fig. 2D + Suppl. Fig. 3B). However, expression of Phospho-Histone H3 (Phospho-H3) was reduced in B cell-deficient and BAFFR deficient mice compared to WT controls following PHx (Fig. 2E + Suppl. Fig. 3C+D). Furthermore, expression of Ki-67 was delayed in absence of B cells or BAFFR (Figure. 2F+ Suppl. Fig. 3E+F). These data indicate that B cells provide important factors for hepatocyte proliferation and liver regeneration. Next, we wondered, which B cell derived factors are important for liver regeneration. B cells express Lta and Ltb, which are critical for lymphoid tissue organization. We found decreased expression level of Ltb in Jh−/− mice compared to WT controls both in the spleen and liver after PHx and also naïve mice (Fig. 3A+B), while the difference in Lta expression was not significant after PHx in the liver in our setting (Suppl. Fig. 4). This opted us to speculate that Ltb plays a major role in regulating B cell-mediated liver regeneration in our settings. To further validate that Ltb is produced by B cells, we adoptively transferred B cells into Jh−/− mice (Fig. 3C), which rescued Ltb expression levels in the liver (Fig. 3D+E). Consistently, when we adoptively transferred B cells into Jh−/− mice, we could rescue severe disease development following PHx (Fig. 3F). Furthermore, B cell transfer into partially hepatectomized Baffr−/− mice prevented severe disease (Fig. 3G). Since lymphotoxins are known to be critical for liver regeneration(30),
we hypothesized that B cell-derived-Ltβ expression may contribute to liver regeneration. Consistently, when we applied an agonistic anti-LtβR antibody prior to PHx, we observed protection of Jh−/− mice (Fig. 3H). Taken together, these data indicate that B cells are critical to contribute towards liver regeneration.

CD169+ cells are critical for liver regeneration following PHx.

Ltα and Ltβ are important cytokines for the maintenance of CD169+ macrophages in the spleen(18-20). B cells are critical for organization of the lymphoid tissue, as B cell-deficient mice exhibit reduced presence of metallophilic CD169+ macrophages (Fig. 4A+ B) (15, 23). Following adoptive transfer of B cells into Jh−/− mice CD169+ cells were restored (Fig. 4C). Therefore, we hypothesized that B cell-mediated maintenance of CD169+ cells contribute to liver regeneration. Interestingly, we observed higher numbers of CD169+ cells in the regenerating, but also the remaining liver lobe using flow cytometry (Fig. 4D). Notably, following splenectomy the increase of CD169+ cells was abolished (Suppl. Fig. 5A). Furthermore, we observed a slight increase of CD169+ cells in the spleen compared to unoperated mice (Fig. 4E). CD169+ cells can be depleted by injection of diphtheria toxin into CD169-DTR mice (24). To exclude effects of DT on other cell types, we administered DT to WT mice before and after PHx and observed no effects in liver regeneration and survival (Suppl. Fig. 5B+C). Absence of CD169+ cells resulted in slightly increased AST activity in the serum after PHx when compared to WT controls (Fig. 4F). Furthermore, DT-treated CD169-DTR mice succumbed after PHx compared to control mice (Fig. 4G). Taken together, we identified CD169+ cells to be important for liver regeneration following PHx.

Consistent with the findings in B cell-deficient mice, we observed no histological differences in absence or presence of CD169+ cells in H&E tissue sections (Suppl. Fig.
Moreover, we could not detect increased TUNEL staining following PHx in DT-treated CD169-DTR mice compared to untreated controls (Suppl. Fig. 5E). However, we observed delayed liver regeneration following PHx in DT-treated CD169-DTR mice in comparison to control animals as evident by decreased liver/body weight ratio (Fig. 5A). Furthermore, we found reduced presence of phospho-H3 and reduced expression of Ki-67 cells in the liver tissue in DT-treated CD169-DTR mice in comparison to control animals (Fig. 5B+C + Suppl. Fig. 5F). Consistently, expression of proliferating cell nuclear antigen (PCNA), which is involved in DNA repair and synthesis was reduced in the liver as a result of CD169+ cell depletion compared to WT mice following PHx (Fig. 5D). We next analyzed the liver morphology in DT-treated CD169-DTR mice at later time points such as 13 days after PHx. We observed a slight, but significant reduction in liver weight in DT-treated mice compared to untreated controls (Fig. 5E). Together these data suggest that CD169+ cells promote proliferation following PHx and therefore contribute to liver regeneration.

CD169+ cells promote IL-6 production during liver regeneration

To define how CD169+ cells contribute to liver regeneration we analyzed RNA expression levels of genes encoding for cytokines important for liver regeneration (Fig. 6A). We found decreased IL-6 expression in B cell-deficient mice in the liver when compared to control animals in our setting (Figure. 6A+B). Transfer of B cells into Jh−/− mice could restore IL-6 expression levels in the liver (Fig. 6C). IL-6-deficient mice show delayed liver regeneration (6-8). We speculated that CD169+ cells might trigger liver regeneration by inducing expression of IL-6. In line with that, DT-treated CD169-DTR mice showed reduced RNA expression levels of Il-6 in liver tissue compared to control animals 6 and 48 hours after PHx (Fig. 6D+E). Moreover, IL-6 expression was
reduced on a protein level 48 hours following PHx in absence of CD169+ cells (Fig. 6F). Notably, we also observed early increase in IL-6 expression levels in absence of CD169+ cells, and accordingly STAT3 phosphorylation 12 hours after PHx (Fig. 6D+G). However, consistent with the reduced expression of IL-6, we observed lower expression of phospho-STAT3 in liver tissue harvested from CD169+ cell deficient mice compared to CD169+ cell competent mice 24 and 48 hours after PHx (Fig. 6G + Suppl. Fig. 6). Notably, we observed similar induction of phospho-Erk and similar decrease of IκBα, indicating that other signaling pathways participating in liver regeneration remain intact in the absence of CD169+ cells in our settings (Fig. 6G + Suppl. Fig. 6).

To explore whether IL-6R signaling can compensate for CD169+ cells, we administered IL-6/IL-6R protein before and after PHx in DT treated CD169-DTR (6). As expected, we found increased STAT3 phosphorylation following injection with IL-6/IL-6R in both, CD169+ cell competent or depleted animals (Fig. 7A). Notably, liver weight/body weight ratio in CD169-DTR DT treated animals after PHx following treatment with IL-6/IL-6R was comparable to untreated CD169-DTR mice following PHx (Fig. 7B), indicating that injection of IL-6/IL-6R could restore liver regeneration in CD169+ cell depleted mice. Consistently, we found increased expression of phospho-H3 and Ki-67 following treatment with IL-6/IL-6R of CD169-DTR mice when compared to CD169-DTR controls (Fig. 7C). Moreover, PCNA expression was increased after IL-6/IL-6R treatment in absence of CD169+ cells after PHx (Fig. 7D). Furthermore, we found that IL-6/IL-6R protein significantly rescued the pathology following PHx in CD169-DTR animals (Fig. 7E). In conclusion, we identified that B cell-mediated maintenance of CD169+ cells contributes to IL-6 production and liver regeneration.
Discussion

In this study, we identify that B cells promoted maintenance of CD169$^+$ cells, which are critical for liver regeneration. Consistently, depletion of CD169$^-$ cells resulted in reduced IL-6 expression following PHx and consequently reduced activation of STAT3 signaling pathways. Application of IL-6/IL-6R could rescue defective liver regeneration in absence of CD169$^+$ cells.

Liver regeneration is triggered by key signaling pathways, which are regulated through several cytokines. Specifically, the TNF superfamily members TNF, Lta, and Ltb have been shown to be important for liver regeneration. Lta and Ltb production by T cells play an important role during liver regeneration. Notably, B- and T-cell-specific LTα and LTβ deficient mice display also reduced presence of CD169$^+$ cells(19). Hence, lymphotoxin could not only exhibit effects on hepatocytes, but also on CD169$^+$ cells and thereby affect IL-6-mediated signaling. Specifically, we observed reduced IL-6 expression in liver tissue from DT-treated CD169-DTR mice compared to control animals. Consistently, defective IL-6 signaling results into impaired liver regeneration, a transient effect, which can result in altering severity of the phenotype (6, 7). Similarly, we observed severe pathology in a proportion of animals following splenectomy and PHx albeit other studies, which also reported a supporting role of the spleen during liver regeneration in mice, did not indicate a severe pathology (28). Since at later time points we observed only slight, but significant decrease in liver mass in absence of CD169$^+$ cells, the effects described here might be also transient. We speculated that underlying mechanisms following defective liver regeneration in B cell and CD169$^-$ cell deficient animals likely preceded the development of disease symptoms and therefore analyzed early time points following PHx. Consistently, we found reduced presence of proliferation markers and reduced liver weight/body weight ratio during these time points. However, treatment with IL-6/IL-6R improved expression of hepatic
proliferation markers, liver weight/body weight ratio, and observed pathology in absence of CD169\(^+\) cells (6).

The spleen is ideally situated to trigger liver regeneration. The blood from spleen tissue directly feeds into the portal vein circulation. Accordingly, cytokines and chemokines produced in the spleen are able to trigger their effects in the liver. As discussed above, several immune factors contribute to or regulate liver regeneration. Splenectomy has been shown to be beneficial in clinical settings of liver cirrhosis and portal hypertension or hypersplenism\(^{(31, 32)}\). These beneficial effects have been attributed towards reduction of the portal circulation\(^{(33)}\). Furthermore, experiments using rats have shown, that splenectomy can result in reduced concentrations of TGF\(\beta\), and consequently reduced inhibitory effects on liver regeneration\(^{(34, 35)}\). Interestingly, these effects increase with the amount of liver mass removed\(^{(35)}\). In mice, splenectomy results in delayed liver regeneration following PHx\(^{(28)}\). The role of B cells in the regulation of liver functions during the acute and chronic liver disease remains controversial \(^{(36, 37)}\). In our settings, splenectomy, B cell deficiency, and deletion of CD169\(^+\) cells resulted in impaired liver regeneration following PHx. One explanation could be that in rats CD169\(^+\) cells from other lymphoid tissue compensate for loss of splenic CD169\(^+\) cells. Furthermore, increased IL-6/IL-6R signaling might compensate for the splenic loss of CD169\(^+\) cells. In our setting, treatment with IL-6/IL-6R could prevent severe pathology in absence of CD169\(^+\) cells. Future studies could compare the activation of B cells and CD169\(^+\) cells during chronic liver disease and liver pathology.

In conclusion, we identified in our model systems, that B cell-mediated maintenance of CD169\(^+\) cells contributes to liver regeneration.
References:

Figure Legends:

Figure 1: Decreased liver regeneration in splenectomized and B cell deficient mice following PHx. (A) Survival of splenectomized, 70 % PHx, and splenectomized mice followed by PHx (PHx+S) was monitored (n=14-19). (B) Liver weight/ body weight ratio was determined at indicated time points in WT sham operated mice and splenectomized mice (left panel), and PHx operated WT mice and splenectomized mice (PHx+S) (right panel) (n=3-5). (C-D) Sections of Snap-frozen liver tissue from 70 % PHx and splenectomized mice followed by PHx (PHx+S) at indicated time points were stained with (C) anti-phospho-H3 and (D) anti-Ki-67 antibodies. Representative sections for each time point are shown (n=4, scale bar=100 µm). Right panels indicate quantification. (E) B cell numbers were determined by flow cytometry in the newly regenerated (New) (n=7-8), and remaining (Old) liver lobes(n=3-4) and spleen tissue (n=7-8) at indicated time points after 70% PHx. Results were calculated according to the liver (g) and spleen weight (mg). (F) Survival of Jh−/− mice (n=9) after 70% PHx compared to sham operated Jh+/+ mice (n=3) and WT mice (n=6). Error bar in the all the above experiments represent SEM; *P < 0.05, **P < 0.01, *** P < 0.001.

Figure 2: B cells play a crucial role for liver regeneration after PHx. (A) The activity of aspartate aminotransferase (AST) and alanine aminotransferase (ALT) was measured in serum of WT and Jh−/− mice following PHx at indicated time points (n=4-5). (B) Sections of Snap-frozen liver tissue from WT and Jh−/− mice following PHx were stained with H&E. One representative set of n=3 is shown. (Scale bar = 200 µm). (C) Survival of Baffr−/− mice (n=18) after 70% PHx compared to sham operated Baffr+/+ mice (n=4) and WT mice after 70% PHx was monitored (n=7). (D) The activity of aspartate aminotransferase (AST) and alanine aminotransferase (ALT) was measured in serum of
WT and Baffr^{−/−} mice following PHx at indicated time points (n=4-5). (E-F) Sections of Snap-frozen liver tissue from WT and Jh^{−/−} mice following PHx were stained with (E) anti-phospho-H3 and (F) anti-Ki-67 antibodies. Representative sections for each time point are shown (n=3, scale bar=100µm). Lower panels indicate quantification. Error bar in the all the above experiments represent SEM, *P < 0.05, **P < 0.01, *** P < 0.001.

Figure 3: B cell-derived lympho toxin beta contributes to liver regeneration after PHx. (A) RNA expression of Ltβ was measured in spleen and liver tissue from WT and Jh^{−/−} mice at the indicated time points post 70% PHx (n=3-4). (B) Protein level of Ltβ was measured in liver tissue from naïve WT and Jh^{−/−}, and WT and Jh^{−/−} mice at the indicated time points post 70% PHx. (C-E) 2*10⁶ purified B cells from WT mice were intravenously injected into Jh^{−/−} mice. After 48 hours, (C) B cell numbers were determined in the spleen by flow cytometry (n=4-6), (D) RNA levels of Ltβ were measured in liver tissue(n=3-5), and (E) Protein level of Ltβ was measured in liver tissue. (F) Survival of Jh^{−/−} mice without (n=6) or after B cell transfer (n=7) was determined following 70% PHx. (G) Survival of Baffr^{−/−} mice without (n=7) or after B cell transfer (n=7) was determined following 70% PHx. (H) Survival of untreated (n=13) and agonist LtβR antibody treated (n=13) Jh^{−/−} mice was monitored after 70% PHx. Error bar in the all the above experiments represent SEM; *P < 0.05, **P < 0.01.

Figure 4: CD169⁺ cells contribute to liver regeneration. (A) Sections of snap-frozen spleen tissue from WT and Jh^{−/−} mice were stained with anti-CD169, anti-B220 and anti-CD90.2 antibodies. Representative sections are shown (n=4-5, scale bar=100µm). Right panel indicates average and SEM of mean fluorescence intensities (MFI) of CD169 stainings. (B) Sections from snap-frozen spleen tissue from WT and Baffr^{−/−} mice were
stained with anti-CD169 anti-B220 and anti-CD90.2 antibodies. Representative sections are shown (n=4-5, scale bar=100µm). Right panel indicates average and SEM of mean fluorescence intensities (MFI) of CD169 stainings. (C) 2*10^6 purified B cells from WT mice were adoptively transferred into Jh⁻/⁻ mice. After 48 hours, CD169 cell numbers were determined in the spleen by flow cytometry (n=4-6). (D-E) CD169⁺ cells were measured by flow cytometry in the newly regenerated (n=7-8) and remaining (Old) (n=3-4) liver lobes (D) and spleen tissue (n=7-8) (E) at the indicated time points after 70% PHx. Results were calculated according to the liver (g) and spleen weight (mg). (F) The activity of aspartate aminotransferase (AST) and alanine aminotransferase (ALT) was measured in serum of WT and DT treated CD169-DTR mice following PHx at indicated time points (n=3). (G) Survival of DT treated CD169-DTR mice after PHx (n=12) compared to WT mice (n=8) after PHx, CD169-DTR mice (n=5) after PHx and sham operated DT treated CD169-DTR mice (n=4) and was monitored. Error bar in all the above experiments represent SEM; *P < 0.05, **P < 0.01, ****P < 0.0001.

Figure 5: CD169⁺ cells promotes presence of hepatic proliferation markers after PHx. (A) Liver weight/ body weight ratio was determined after 70% PHx in DT treated WT mice and DT-treated CD169-DTR mice followed by PHx (n=3). (B-C) Sections of snap-frozen liver tissue from CD169-DTR and DT-treated CD169-DTR mice at indicated time points after 70% PHx were stained with anti-Phospho-H3 (B) and anti-Ki-67 (C) antibodies. Representative sections for each time point are shown (n=3, scale bar=100µm). Right panels indicate quantification. (D) Protein level of PCNA was measured at indicated time points after 70% PHx in DT-treated CD169-DTR and CD169-DTR mice (n=4). Lower panel indicates quantification. (E) liver weight (left panel) and Liver morphology (g, right panel) was determined at day 13 after 70% PHx.
of DT-treated CD169-DTR and CD169-DTR mice (n=3-5). Error bar in the all the above experiments represent SEM; *P < 0.05, **P < 0.01, ***P < 0.001

Figure 6: Defective activation of IL-6 signalling in absence of CD169+ cells. (A) RNA expression level of cytokines important for liver regeneration was determined in the liver tissue from WT and Jh+/− mice at the indicated time points post 70% PHx (n=3). (B) Protein expression of IL-6 was determined in liver tissue from WT and Jh+/− mice at the indicated time points after 70% PHx (n=3). Lower panel indicates quantification. (C) RNA expression levels of IL-6 was measured in the liver tissue of WT and Jh+/− mice without or with purified B cells (n=3-5). (D-E) RNA expression levels of Il-6 were determined in liver tissue from DT treated WT, CD169-DTR and DT treated CD169 DTR mice as labelled at the indicated time points after 70% PHx (n=3-5). (F) Protein expression of IL-6 was determined in liver tissue from CD169-DTR and DT treated CD169-DTR mice at the indicated time points after 70% PHx (n=3). Lower panel indicates quantification. (G) Protein lysates of liver tissue from CD169-DTR mice and DT treated CD169-DTR mice at indicated time points after PHx were blotted and stained with anti-phospho-Erk, anti-Erk, anti-phospho-STAT3, anti-STAT3, anti-IκBα and anti-β-actin antibodies (one representative of n=3 blots is shown). Error bar in the all the above experiments represent SEM; *P < 0.05, **P < 0.01, ***P < 0.001.

Figure 7: IL-6/IL-6R treatment can rescue liver regeneration in absence of CD169+ cells. (A) Protein lysates of liver tissue from CD169-DTR mice or DT treated CD169-DTR mice following IL-6/IL-6R treatment were blotted and stained with anti-phospho-Erk, anti-Erk, anti-phospho-STAT3, anti-STAT3, anti-IκBα and anti-β-actin antibodies.
One representative of n=6 blots is shown. Right panels indicate quantification. (B) Liver weight/body weight ratio was determined at 48 hours after 70% PHx in CD169-DTR mice and DT-treated CD169-DTR mice and following IL-6/IL-6R treatment (n=3-5).

(C-D) Sections of snap-frozen liver tissue from DT treated CD169-DTR mice without or after IL-6/IL-6R treatment at 48 hours after 70% PHx were stained with (C) anti-Phospho-H3 and (D) anti-Ki-67 antibodies. Representative sections for each time point are shown (n=3-5, scale bar C=50µm, D=100µm). Right panels indicate quantification.

(E) Protein level of PCNA was measured in DT treated CD169-DTR mice in absence and presence of IL-6/IL-6R treatment at 48 hours after 70% PHx (n=5). Lower panel indicates quantification. (F) Survival of DT treated CD169-DTR mice without or after IL-6/IL-6R treatment was monitored (n=8-9). Error bar in the all the above experiments represent SEM; *P < 0.05, **P < 0.01, ***P < 0.001.
Figure 2

A

![Graph showing AST and ALT levels over time for WT and Jh^−/− Mouse Model](image)

B

![Graph showing WT and Baffr^−/− Mouse Model survival over time](image)

C

![Graph showing WT, Baffr^−/−, Baffr^−/− PHx survival over time](image)

D

![Graph showing WT and Baffr^−/− Mouse Model survival over time](image)

E

![Phospho-H3 staining for WT and Jh^−/− Mouse Model at 24 and 48 hours](image)

F

![Ki-67 staining for WT and Jh^−/− Mouse Model at 24 and 48 hours](image)
Figure 3

A

Relative Lf4 Expression (WT naive Spleen)

Time (hours)

0 24 40

WT Jh^{-/}

** **

B

WT naive Jh^{-/}

β-actin

Ltf

24h 48h

WT Jh^{-/} Jh^{-/}+B cells

C

WT Jh^{-/} Jh^{-/}+B cells

B cells (Spleen)

10^5 10^6

D

WT Jh^{-/} Jh^{-/}+B cells

Relative Lf4 Expression

10 1

E

WT Jh^{-/} Jh^{-/}+B cells

Ltf

β-actin

F

Jh^{-/}+B cells

Jh^{-/}

Survival (%)

Time (days)

0 5 10

G

Baff^{-/-} Baff^{-/-}+B cells

Survival (%)

Time (days)

0 5 10

H

Jh^{-/}+PBS Jh^{-/} c-LiSR

Survival (%)

Time (days)

0 5 10

190x254mm (300 x 300 DPI)
Figure 5

A. Liver weight/Body weight (%) over time for WT-DTR, CD169-DTR and CD169-DTR+DT groups.

B. Phospho-H3 levels at 24 and 48 hours for CD169-DTR and CD169-DTR+DT groups.

C. Ki-67 staining at 24 and 48 hours for CD169-DTR and CD169-DTR+DT groups.

D. Western blot analysis for PCNA and β-actin at 24 and 48 hours for naive, CD169-DTR, and CD169-DTR+DT groups.

E. Liver weight measurement for CD169-DTR and CD169-DTR+DT groups.
Figure 7

A. Hyper-IL-6

B. Liver weight/BODY weight (%)

C. CD169-DTR+DT

D. Hyper-IL-6

E. CD169-DTR+DT

F. CD169-DTR+DT Phx

190x254mm (300 x 300 DPI)