Research Roundup

Search Research Roundup

Keywords:   

Sleuthing the Cerebellum

Sleuthing the Cerebellum—The brain’s cerebellum is best known for coordinating voluntary movements such as posture, balance and speech. More recently, the cerebellum has also been linked to mental health disorders such as autism spectrum disorders, schizophrenia and addiction, although how it contributes to these problems is poorly understood. The National Institute of Mental Health has awarded Kamran Khodakhah, Ph.D., a five-year, $2.8 million grant to investigate the relationship between the cerebellum and mental health disorders. Dr. Khodakhah has identified two specific pathways by which the cerebellum comes in contact with other parts of the brain to influence social behavior. He and his team will look for defects in those pathways that could reveal how the cerebellum contributes to mental health disorders. Dr. Khodakhah is professor and chair of the Dominick P. Purpura Department of Neuroscience and the Florence and Irving Rubinstein Chair in Neuroscience. (1R01MH115604-01A1)

Friday, July 27, 2018
 
Tracking Memories via mRNA

Tracking Memories via mRNA—“How do memories form?” is a fundamental unanswered question in biology. Researchers in the lab of Robert Singer, Ph.D., have generated a novel mouse model to address that question. In a study published online on June 20 in Science Advances, Dr. Singer and colleagues describe directly visualizing the dynamics of memory-associated messenger RNA in living neurons in response to neuronal activity in real time. A key finding made by Sulagna Das, Ph.D., a postdoctoral researcher in the lab, was that transcription cycles continue even after the initial neuron stimulation is removed. Use of this model system could change our understanding of how memories form and provide insight into neurodegeneration, stroke and mental illness. Dr. Singer is professor and co-chair of anatomy & structural biology, as well as co-director of the Gruss-Lipper Biophotonics Center and of the Integrated Imaging Program at Einstein. He also is professor in the Dominick P. Purpura Department of Neuroscience and of cell biology and the Harold and Muriel Block Chair in anatomy & structural biology at Einstein.

Wednesday, June 27, 2018
 
Unlocking Food Craving

Unlocking Food Craving—The nucleus accumbens (NAc), a part of the brain associated with motivation and reward, may hold a key to understanding why people crave high-calorie foods. In a study published online on March 27 in eLife, Saleem M. Nicola, Ph.D., and his graduate student Kevin Caref found that the NAc’s naturally occurring opioids and opioid receptors activate neurons, which then promote the desire to eat palatable foods after animals reach satiety. In a series of trials, Dr. Nicola trained satiated and non-satiated rats to respond to cues indicating they’re about to receive high-fat food. He observed that the opioid system enhanced neuronal activity—and the desire to eat fatty foods—only in rats that were not hungry. The findings suggest that drugs that block the opioid receptors from stimulating neurons could potentially treat obesity. Dr. Nicola is an associate professor in the Dominick P. Purpura Department of Neuroscience and of psychiatry and behavioral sciences at Einstein.

Monday, April 23, 2018
 
Mechanisms in Diabetic Bone Loss

Mechanisms in Diabetic Bone Loss —Diabetes affects the way sensory fibers in bones receive mechanical and neural signals. That means bone mass doesn’t increase as it normally does in response to mechanical stimulation. With a five-year, $2.1 million grant from the National Institute of Arthritis and Musculoskeletal and Skin Diseases, Mia M. Thi, Ph.D., and Sylvia O. Suadicani, Ph.D.,  will build on previous research suggesting that the protein complex Panx1-P2X7R influences bones’ ability to receive and respond to signals. They will examine whether diabetes affects the bones’ sensory fibers; if regulating Panx1-P2X7R is essential for bone adaptation; and if dysfunction of this protein complex triggers inflammation that impairs bone growth. Using animal models of type 1 diabetes, they will investigate new treatments for stemming diabetic bone loss. Dr. Thi is an assistant professor of orthopaedic surgery and an instructor in the Dominick P. Purpura Department of Neuroscience. Dr. Suadicani is associate professor of urology and is an assistant professor in the Dominick P. Purpura Department of Neuroscience. (1R01AR073475-01)

Tuesday, March 20, 2018
 
Visual Clutter and Impaired Vision

Visual Clutter and Impaired Vision—Visual crowding—clutter’s interference with our ability to recognize individual objects—can be a significant problem for people with macular degeneration and other eye diseases. Adam Kohn, Ph.D., has received a five-year, $2.1 million grant from the National Eye Institute to determine the neural underpinnings of visual crowding. In research using monkeys and focusing on the brain’s visual cortex, Dr. Kohn will examine how crowded visual displays affect the ability of nerves to absorb sensory information. His findings may lead to better therapies for the impaired central vision that characterizes macular degeneration. Dr. Kohn is professor in the Dominick P. Purpura Department of Neuroscience and of ophthalmology and visual sciences and systems & computational biology. (1R01EY028626-01)

Friday, March 09, 2018
 
Exploring Dystonia's Genetic Cause

Exploring Dystonia's Genetic Cause—The neurological disorder dystonia causes muscles to contract involuntarily. It is the third most common movement disorder (after Parkinson’s and essential tremor) and affects about 250,000 Americans. Einstein’s Kamran Khodakhah, Ph.D. and colleagues developed a mouse model of DYT1, the most common inherited form of dystonia that replicates the neurological symptoms of patients. Using this mouse model, they determined that dystonia is caused primarily by dysfunction of the brain’s cerebellum. The National Institute of Neurological Disorders and Stroke has awarded Dr. Khodakhah a five-year, $2.3 million grant to use his mouse model to determine at the cellular and molecular level how mutations associated with DYT1 cause dystonia. Dr. Khodakhah is professor and chair of the Dominick P. Purpura Department of Neuroscience and the Florence and Irving Rubinstein Chair in Neuroscience. (1R01NS105470-01)

Friday, February 02, 2018
 
Following mRNA from Birth to Death

Following mRNA from Birth to Death—Messenger RNA (mRNA) is crucial for converting genetic information into proteins and for regulating gene expression. The life of an mRNA molecule in cells—including its transcription in the nucleus and translation of its message into a protein—can be followed using the MS2 imaging system, developed by Robert Singer, Ph.D., Evelina Tutucci Ph.D., and Maria Vera Ph.D., at Einstein. In a paper published online on November 13 in Nature Methods, Dr. Singer and colleagues describe re-engineering the MS2 system so that it can now follow mRNAs all the way from birth to degradation. Emerging evidence indicates that this final stage in the life of mRNA molecules is highly regulated: The need for rapid activation and de-activation of specific genes requires that mRNA production and degradation be coordinated so that protein levels can be tightly controlled. Dr. Singer is professor and co-chair of anatomy & structural biology, as well as co-director of the Gruss-Lipper Biophotonics Center and of the Integrated Imaging Program. He also is professor in the Dominick P. Purpura Department of Neuroscience and of cell biology and the Harold and Muriel Block Chair in anatomy & structural biology.

Tuesday, January 02, 2018
 
Peripatetic mRNAs

Peripatetic mRNAs—In a study published online on October 24 in the Proceedings of the National Academy of Sciences, Einstein researchers, led by Robert Singer, Ph.D., describe the mechanism by which messenger RNA (mRNA) molecules travel from one cell to another: via extensions called membrane nanotubes that form when cells are in direct contact with each other. mRNA transfer from cell to cell could influence processes such as tissue development and cellular response to stress. Dr. Singer is professor and co-chair of anatomy & structural biology, as well as co-director of the Gruss-Lipper Biophotonics Center and of the Integrated Imaging Program. He also is professor in the Dominick P. Purpura Department of Neuroscience and of cell biology and the Harold and Muriel Block Chair in anatomy & structural biology. Gal Haimovich, the study’s lead author, was a Gruss Lipper Postdoctoral Fellow at Einstein when the research was conducted.

Wednesday, December 27, 2017
 
How the brain drives adaptive behavior

How the brain drives adaptive behavior—When we react to sensory stimuli, our brains tap into a network of neurons that drives behavior. But little is understood about that network’s architecture, the contributions of its individual cells nor how the network changes with learning. Jose Luis Peña, M.D., Ph.D., has been awarded a five-year $3-million NIH BRAIN Initiative grant to investigate how neural networks become fine-tuned to their environment and adapt through exposure to life experiences. The research will involve barn owls, which are keenly attuned to relying on sound for locating prey. Dr. Pena and colleagues from Seattle University, University of California in Davis and San Diego will use high-throughput electrophysiology, electron microscopy, behavior and theory to determine how sound drives the owl's orienting behavior. Dr. Peña is a professor in the Dominick P. Purpura Department of Neuroscience. (1R01NS104911-01)

Tuesday, November 28, 2017
 
The Cerebellum -Addiction Connection

The Cerebellum -Addiction Connection—Evidence suggests that dysregulation of the cerebellum—a part of the brain well known for motor coordination—contributes to mental health disorders including schizophrenia, autism and addiction. Yet the cerebellum’s impact on cognitive function remains largely unexplored. Kamran Khodakhah, Ph.D., has received a five-year, $3.6 million grant from the National Institute on Drug Abuse to expand on his earlier research linking the cerebellum to the ventral tegmental area (VTA), a brain region involved in addiction and other reward-seeking behaviors. He and his colleagues will use anatomical and physiological approaches to find the neural pathways by which the cerebellum can affect the VTA as well as two other regions associated with addiction: the prefrontal cortex and the nucleus accumbens. Dr. Khodakhah is professor and chair of the Dominick P. Purpura Department of Neuroscience and the Florence and Irving Rubinstein Chair in Neuroscience. (1R01DA044761-01A1)

Tuesday, November 21, 2017
 
First Page | Previous Page | Page of 6 | Next Page | Last Page