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Proper execution of cellular processes is mediated through various 
proteins working together in complexes to perform specific tasks1.  
A crucial task for cells is to coordinate the expression of genes that 
encode these functionally related proteins to ensure proper complex 
 stoichiometry. Considerable progress has been made in identifying genes 
encoding functional complexes and in characterizing transcriptional 
networks that co-regulate their expression2–6. These transcriptional net-
works describe regulator-gene interactions that allow a cell to coordinate 
the expression of proteins needed to facilitate biological functions such 
as the optimal assembly of multi-protein complexes7–9.

The expression of a gene, however, involves random interactions 
between molecules present in small numbers per cell. Most proteins 
are produced from fewer than ten copies of mRNA, which in turn are 
produced from just one or two copies of a gene per cell4,10. Therefore, 
the process of gene expression is subject to stochastic fluctuations and 
can lead to considerable differences in the level of expression between 
genetically identical cells11. Several studies have used fluorescent pro-
tein reporters to track protein levels in single cells so as to gain a com-
prehensive understanding of sources of variation in expression, which 
are generally classified into extrinsic and intrinsic components12–15. 
Extrinsic variation arises from cell-to-cell differences in global factors 
such as transcriptional activators, metabolic status or cell cycle stage. 
Intrinsic variation, on the other hand, arises from inherently random 
fluctuations in molecular events such as production or destruction 
of mRNAs and proteins.

Initial experiments in yeast, largely limited to induced genes, sug-
gested that cell-to-cell differences in expression were mostly due to 
extrinsic sources16,17. However, recent studies aimed at a broader set 
of genes reported a more substantial contribution from intrinsically 

random fluctuations, especially for proteins with low or intermediate 
abundance18–20. These high-throughput studies also noted protein-
specific differences in variation. Particularly, essential genes encod-
ing subunits of multi-protein complexes were characterized by low 
variation21. Moreover, a proportional relationship between expression 
variance and mean suggested that variation in protein levels arises 
from fluctuations in mRNA levels due to random production and 
decay of mRNAs or random activation and inactivation of the gene 
promoter13,18. Therefore, direct measurements of mRNA abundance 
are crucial to understanding how individual cells co-regulate the 
expression of functionally related proteins.

Although ensemble methods such as northern blots and reverse-
transcription PCR are inadequate for measuring mRNA abundance 
in individual cells, technological advances in detecting single mRNAs 
have made it possible to measure mRNA abundance as well as tran-
scriptional activity in single cells22–25. Indeed, a recent study in the 
yeast Saccharomyces cerevisiae showed that random fluctuations in 
mRNA abundance of constitutive genes arise from single, uncor-
related transcription-initiation events24. Constitutive genes, which 
are expressed throughout the cell cycle without requiring additional 
stimuli when cells are grown in rich media, account for two-thirds 
of the yeast genome. Studying how their expression is coordinated in 
the presence of stochastic fluctuations is therefore instrumental to 
understanding how cellular systems work. In particular, how does an 
individual cell coordinate the expression of functionally related genes 
and produce the stoichiometry required for a multi-protein complex 
in the presence of stochastic fluctuations?

To address this question, we used a highly sensitive fluorescence 
in situ hybridization (FISH)-based approach to count the mRNAs of 
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Transcription of functionally related constitutive genes  
is not coordinated
Saumil J Gandhi, Daniel Zenklusen, Timothée Lionnet & Robert H Singer

Expression of an individual gene can vary considerably among genetically identical cells because of stochastic fluctuations in 
transcription. However, proteins comprising essential complexes or pathways have similar abundances and lower variability. 
It is not known whether coordination in the expression of subunits of essential complexes occurs at the level of transcription, 
mRNA abundance or protein expression. To directly measure the level of coordination in the expression of genes, we used 
highly sensitive fluorescence in situ hybridization (FISH) to count individual mRNAs of functionally related and unrelated genes 
within single Saccharomyces cerevisiae cells. Our results revealed that transcript levels of temporally induced genes are highly 
correlated in individual cells. In contrast, transcription of constitutive genes encoding essential subunits of complexes is not 
coordinated because of stochastic fluctuations. The coordination of these functional complexes therefore must occur post-
transcriptionally, and likely post-translationally.
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multiple functionally related and unrelated genes simultaneously in 
single S. cerevisiae cells. We hypothesized that mRNA abundances of 
essential genes encoding proteins in the same complex or pathway 
would be more correlated than those of functionally unrelated genes. 
We show that cells transcribe induced genes in a highly coordinated 
manner. However, transcript levels of constitutive genes encoding 
essential subunits of multi-protein complexes, such as the protea-
some, RNA polymerase II or the general transcription factor TFIID, 
are not correlated any more than functionally unrelated genes. Finally, 
our modeling results show that synchronizing effects of cell division 
account for weak correlations observed among transcript levels of all 
constitutively active genes.

RESULTS
We used a previously described FISH-based approach to detect 
nascent mRNAs at the site of transcription in the nucleus as well as 
mature mRNAs in the cytoplasm for two genes in single S. cerevisiae 
cells22,24. Multiple oligodeoxynucleotide probes, each labeled with 
five fluorescent dye molecules, hybridized to nascent transcripts at 
the transcription site in the nucleus and mature transcripts in the 
cytoplasm. Spectrally distinct fluorescence signals from individual 
mRNAs of each gene, labeled with either cyanine 3 or cyanine 3.5 
dye, were detected with a spot-detection algorithm and counted26. 
This approach allowed us to simply fix cells and generate single-cell 
expression profiles of endogenous genes without the need for any 
genetic perturbations. Single-cell mRNA abundances were then used 
to calculate pairwise correlation coefficients (r), representing the 
degree of coordination between two genes with extremes of +1 (most 
 correlated), 0 (uncorrelated) and −1 (most anti-correlated).

Highly coordinated transcription of galactose network
We used a network of galactose-inducible (GAL) genes to validate our 
method of quantifying the level of coordination in individual cells. 
Transcription of GAL1, GAL10 and GAL7 is 
activated through de-repression of a common 
transcription factor Gal4p upon induction 
with galactose27,28. Gal4p operates through 
four binding sites in the upstream activating 
sequence (UAS) of the GAL1-GAL10 diver-
gent promoter (Fig. 1a). Gal4p also activates 

the transcription of GAL7 through two binding sites in a similar, but 
distinct, UAS from the GAL1-GAL10 UAS.

We first examined whether nascent GAL transcripts were present 
in a coordinated manner at the site of transcription in the nucleus. 
Pairwise analysis of transcription sites for these three genes revealed 
various modes of transcription (Fig. 1b–d). GAL genes were tightly 
repressed in cells grown in 2% (w/v) raffinose. Only 6  2% of cells 
were actively transcribing either GAL1 or GAL10, and these had on 
average less than one transcript in the cytoplasm. After induction 
with 2% (w/v) galactose for 15 min, a majority (60  4%) of cells 
were actively transcribing both GAL1 and GAL10 (Fig. 1d). However, 
a small fraction of cells were transcribing only GAL1 (12  2%) or 
GAL10 (7  1%). The remaining 21  3% of cells did not have a trans-
cription site for either gene. A pairwise analysis of two genes with 
similar but distinct UAS (GAL1 and GAL7) showed a similar fraction 
of cells with both genes in the ‘off ’ state (Fig. 1c). However, a slightly 
smaller percentage of cells were actively transcribing both genes  
(44  5%) compared to GAL1-GAL10.

Because transcription sites in the nucleus describe only the 
 earliest stages of coordination in gene expression, we next compared 
cytoplasmic expression profiles in a pairwise manner (Fig. 2). As 
expected, the three induced genes showed expression profiles with 
similar means after 15 min of induction with 2% (w/v) galactose. 
However, the expression level varied between individual cells in the 
population. For example, GAL1 expression ranged between 0 and 40 
mRNAs per cell with a mean of 9.2 transcripts (Fig. 2b, right histo-
gram). GAL10 expression in the same population ranged between 0 
and 40 mRNAs per cell with a mean of 7.6 (Fig. 2b, top histogram). 
Notably, we found that GAL1 and GAL10 transcript levels within the 
same cell were highly correlated (Fig. 2b, heat map). A correlation 
coefficient r of 0.88  0.01 was calculated from the joint distribution of 
GAL1 and GAL10 mRNAs per cell. The same pairwise measurement 
between GAL7 and GAL1, two genes with distinct Gal4p binding sites, 
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Figure 1 Highly coordinated transcription of 
genes in the galactose network. (a) Schematic 
diagram of the organization of three GAL genes 
and their promoters on chromosome II.  
(b) Nascent transcripts at the transcription site 
(TS) in the nucleus and individual transcripts in 
the cytoplasm detected with single-mRNA FISH. 
GAL7 mRNA (red) and GAL1 mRNA (green) 
were detected in the same cell with cyanine 3– 
and cyanine 3.5–labeled probes, respectively. 
DAPI (blue) was used to demarcate the nucleus. 
Differential interference contrast (DIC) images 
are shown in the last column. The scale bars are 
1 m. (c) Fraction of cells showing each of the 
four different modes of transcription shown in b. 
Fraction of 196 cells with active transcription 
sites for only GAL7 (red), only GAL1 (green), 
both genes (yellow) and neither gene (black). 
(d) The same pairwise analysis of GAL10 and 
GAL1 transcription sites in 309 cells. Error bars 
indicate s.e.m.
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yielded a slightly lower r value (0.69  0.03) (Fig. 2a). The lower corre-
lation was consistent with a slightly lower probability of both promot-
ers actively transcribing at the same time. Nevertheless, coordinate 
activation of transcription sites in the nucleus and high correlation 
coefficients between cytoplasmic mRNAs indicate that expression of 
GAL transcripts is highly coordinated in individual cells.

Anti-correlated mRNAs of cell cycle stage–regulated genes
Progression through the cell cycle requires orchestrated expression 
of specific proteins at well-defined time intervals. Many genes have 
been shown by ensemble measurements to be transcribed only within 
specific windows during the cell cycle29. We therefore expected that 
within single cells, genes expressed during different stages of the 
cell cycle would be anti-correlated: that is, their expression would 

be mutually exclusive. We measured pairwise correlations between 
mRNA abundance for a network of cell cycle stage–regulated genes 
(Fig. 3a). The expression of transcriptional activator NDD1 peaks 
during the S phase and is essential for expression of its target genes, 
SWI5 and CLB2, during the G2/M phase30,31. To measure the expres-
sion profiles of these genes, we used differential interference contrast 
(DIC) images to divide 503 asynchronous cells into three different 
cell cycle stages based on morphology: G1, S and G2/M. As expected, 
SWI5 and CLB2 expression is off during most of the cell cycle but 
peaks sharply during the G2/M phase. NDD1 expression, on the other 
hand, is broader and peaks during the S phase (Fig. 3b). Because the 
expression of NDD1 and its target genes peak during different stages 
of the cell cycle, we expected the number of NDD1 mRNAs to be anti-
correlated with the numbers of SWI5 or CLB2 mRNAs within the same 

Figure 2 Correlation between cytoplasmic 
mRNA abundance of GAL genes in  
individual cells. (a) Heat map of  
number of GAL7 and GAL1 mRNAs in  
195 individual cells. The color of each  
point indicates the number of cells  
observed at that value as specified by  
the color bar at the bottom. The marginal 
histograms represent the frequency of  
GAL7 mRNAs per cell (top) and GAL1  
mRNAs per cell (right) across the entire 
population. The expression of GAL7  
(top) ranged between 0 and 40 mRNAs  
per cell with a mean ( GAL7) of 10.6  0.7  
and a s.d. ( GAL7) of 9.9 transcripts.  
The expression of GAL1 (right) ranged  
between 0 and 40 mRNAs per cell with  

GAL1 = 9.0  0.7 and GAL1 = 11.1.  
The correlation (r) between transcripts  
of these two genes in the same cell was 0.69  0.04. (b) Pairwise correlation between the number of GAL10 and GAL1 transcripts in 325 cells. 
Marginal histograms: GAL10 = 7.6  0.5, GAL10 = 8.1 (top); GAL1 = 9.2  0.5, GAL1 = 10.4 (right). Error bars indicate s.e.m.
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Figure 3 Anti-correlation between cytoplasmic 
mRNA abundance of genes expressed during 
different cell cycle stages. (a) Cartoon of 
expression profile for NDD1 and its target 
genes SWI5 and CLB2 across different stages 
of the cell cycle. (b) Experimentally measured 
average mRNA abundance of NDD1, SWI5 
and CLB2 across three different stages of the 
cell cycle. (c) Representative FISH images of 
mRNAs of the transcriptional activator NDD1 
(red) and its target gene SWI5 (green) in an 
asynchronous population of cells. The nuclei 
are marked with DAPI (blue). The scale bar 
in the DIC image of cells is 1 m. (d) NDD1 
and SWI5 transcripts are anti-correlated in 
a subset of cells that excludes G1 cells. The 
distribution of mRNAs per cell for each gene 
across the population is depicted by the 
marginal histograms: SWI5 = 2.9  0.3, SWI5 
= 2.9 (top); NDD1 = 3.6  0.3, NDD1 = 2.1 
(right). (e) SWI5 and CLB2 mRNAs, expressed during the same cell cycle stage, are highly correlated in a subset that excludes G1 cells. Marginal 
histograms: SWI5 = 4.1  0.4, SWI5 = 3.4 (top); CLB2 = 4.7  0.4, NDD1 = 3.4 (right). Error bars indicate s.e.m.
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cell. On the other hand, we predicted that mRNA levels of the tran-
scription factors SWI5 and cyclin CLB2 would be highly correlated 
because their expression peaks during the same cell cycle stage.

Figure 3c shows representative FISH images, with some cells in G1, 
where transcription of both NDD1 and SWI5 is essentially off, and 
other cells in stages (S to M), where they are expressing either NDD1 
or SWI5. Transcript distributions for cells in G1 showed that NDD1 
expression ranged between 0 and 8 mRNAs per cell and SWI5 ranged 
between 0 and 11 mRNAs per cell, with more than 90% of cells express-
ing only 0 or 1 mRNA (Supplementary Fig. 1a,b). Because mRNAs of 
these genes are not expressed during the G1 phase of the cell cycle, we 
used DIC images to exclude unbudded G1 cells from our analysis. As 
expected, mRNA levels of NDD1 and SWI5 in the remaining cells were 
weakly anti-correlated (r = −0.26  0.08) (Fig. 3d). For comparison, we 
used the same approach to measure the pairwise correlation between 
SWI5 and CLB2, two target genes of NDD1 that are activated during 
the same cell cycle stage. Pairwise measurements between SWI5 and 
CLB2 showed similar expression profiles for both genes (Fig. 3e and 
Supplementary Fig. 1b,c). Moreover, their transcript abundances in 
individual cells were highly correlated (r = 0.68  0.06), as expected.

These experiments show that mRNA expression can be highly cor-
related or anti-correlated within single cells, and they confirm that 
counting of single mRNAs provides a very precise approach for quan-
tifying a wide range of coordination in transcript abundance.

Weakly correlated functionally unrelated constitutive genes
After validating our method with genes whose abundance was expected 
to be positively or negatively correlated, we turned our attention to 
a common class of genes, the housekeeping 
genes. Previous single-cell measurements 
of mRNA abundance for constitutive genes 
have shown that cell-to-cell variation can be 
described by a Poisson distribution and arises 
from intrinsically stochastic fluctuations in 
transcription initiation24. However, the extent 
to which these random fluctuations affect a 
cell’s ability to coordinate mRNA levels of 
multiple genes, and of the entire transcrip-
tome in general, is not known.

We began by measuring pairwise correlation coefficients between 
mRNAs of three functionally unrelated constitutive genes: MDN1 
(ribosome biogenesis), PRP8 (pre-mRNA splicing) and KAP104 
(nucleocytoplasmic transport). Representative FISH images of MDN1 
and PRP8 mRNAs within single cells are shown in Figure 4a. The 
three genes show similar expression profiles, with variation that can 
be described by a Poisson distribution, consistent with previously 
described uncorrelated transcription initiation of constitutive genes 
(Fig. 4b–d, histograms on top and right)24. As such, we predicted 
that transcript levels of these unrelated genes, without any known 
regulatory pathways in common, would be essentially uncorrelated  
(r ~0). Indeed, we observed a weak correlation (r = 0.26  0.05) 
between the number of MDN1 and PRP8 transcripts in a cell (Fig. 4b, 
heat map). Pairwise comparison of these two genes against KAP104 
also yielded the same result (Fig. 4c,d). These results suggest that glo-
bal or extrinsic factors lead to weak correlations between transcripts 
of functionally unrelated constitutive genes within a cell.

Functionally related genes are only weakly correlated
Previous studies have suggested that optimal complex assembly depends 
on the presence of equal levels of protein subunits in a cell7. Furthermore, 
proteins in the same complex or pathway tend to have similar mean 
abundances and lower variability between individual cells8,18,20,21. This 
would suggest that mRNA expression of genes encoding subunits of 
multi-protein complexes should also be coordinated to facilitate efficient 
complex assembly. However, whether transcript levels of constitutively 
expressed functionally related genes within a cell are more correlated 
than those of functionally unrelated genes is not known.
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Figure 4 Correlation between cytoplasmic 
mRNA abundance of functionally unrelated 
constitutively active genes. (a) Representative 
FISH images of mRNAs of two functionally 
unrelated genes, PRP8 (green) and MDN1 
(red), are shown along with the DIC image of 
cells. The nuclei are marked with DAPI (blue). 
The scale bar is 1 m. (b) Heat map of number 
of MDN1 and PRP8 transcripts in 369 cells. 
The correlation (r) between transcripts of these 
two genes in the same cell was 0.26  0.05. 
The distribution of mRNAs per cell for each 
gene across the population is depicted by the 
marginal histograms: MDN1 = 4.3  0.1, MDN1 
= 2.4 (top); PRP8 = 2.5  0.1, PRP8 = 1.4 
(right). (c) Pairwise correlation between PRP8 
and KAP104 in 179 cells. Marginal histograms: 

PRP8 = 3.1  0.2, PRP8 = 1.8 (top); KAP104 = 
3.3  0.2, KAP104 = 1.5 (right). (d) Correlation 
between MDN1 and KAP104 in 260 cells. 
Marginal histograms: MDN1 = 4.4  0.1, MDN1 =  
2.4 (top); KAP104 = 3.1  0.1, KAP104 = 1.6 
(right). Error bars indicate s.e.m.
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For comparison, we measured pairwise correlations among sev-
eral groups of genes encoding subunits of multi-protein complexes 
(Fig. 5). The complexes we investigated were constitutive and essential 
and required rigid stoichiometry between subunits. For all genes, the 
variance of transcript distributions was equal to the mean transcript 
abundance, which is characteristic of fluctuations due to uncorre-
lated stochastic processes. Surprisingly, mRNAs of genes encoding 

-subunits of the stable proteasome core complex were no more 
correlated than mRNAs of functionally unrelated genes (Fig. 5a and 
Supplementary Fig. 2). TBP-associated factor (TAF) genes encoding 
subunits of the general transcription factor TFIID, essential for initiat-
ing RNA polymerase II transcription, also showed pairwise correlation 
coefficients in the same range (Fig. 5b and Supplementary Fig. 3). 
Finally, transcripts of three genes (RPB1, RPB2 and RPB3) encoding 
core subunits of RNA polymerase II were only weakly correlated, just 
like functionally unrelated genes (Fig. 5c and Supplementary Fig. 4). 
These results suggest that coordination of both functionally related 
and unrelated genes is subject to a balance between two opposing 
processes: global factors simultaneously affecting all constitutively 
active genes in a cell (correlated process) and stochastic fluctuations 
independently affecting individual genes (uncorrelated process).

One alternative possibility is that the lack of strong correlation between 
mRNAs of functionally related genes is due not to stochastic fluctuations, 
but rather to gene-specific differences in regulation. Although this is an 
unlikely possibility, because genes such as PRE3 and PUP1 are only weakly 
correlated despite being regulated through a common transcriptional 
activator Rpn4p, the results thus far do not explicitly rule it out32,33.

Two alleles of the same gene are also weakly correlated
To determine whether two genes dependent on the same transcription 
factor are any more correlated in their expression than two unrelated 

genes, we measured the correlation between transcripts produced 
by each allele of MDN1 in diploid cells. The two endogenous alleles 
have identical promoters and would be affected identically by gene-
 regulatory signals within the same cell. However, stochastic fluctuations 
in the transcription of each allele are independent and would lead to dif-
ferences in expression between the two alleles. To distinguish between 
transcripts from the two alleles, we inserted RNA hairpins from bacterio-
phage PP7 in the 3  untranslated region of one of the two MDN1 alleles 
(Fig. 6a). Whereas MDN1 coding sequence probes would hybridize to 
transcripts from both alleles, the probes for RNA hairpins would only 
hybridize to transcripts from one of the two alleles (Fig. 6b).

The expression of each MDN1 allele in diploid cells was simi-
lar to previously reported measurements24 from haploid cells 
(Supplementary Fig. 5). Each allele expressed between 1 and 15 
mRNAs per cell, with a mean around 5 transcripts (Fig. 6c, histo-
grams on top and right). In the absence of intrinsic fluctuations, 
a cell would have an equal number of transcripts from each allele  
(r = 1). However, constitutive genes in yeast are subject to stochastic 
fluctuations, leading to uncoordinated transcription initiation at each 
allele. As a result, we found only a weak correlation (r = 0.33  0.06) 
between transcripts from two alleles of MDN1 (Fig. 6c, heat map). 
In summary, mRNA levels of unrelated genes, functionally related 
genes and even two alleles of the same gene with identical promoters 
are only weakly correlated.

To verify that this observation reflects stochastic fluctuations in 
the transcriptional activity of a gene and not another process (for 
example, mRNA decay), we also measured the distribution of nascent 
mRNAs at the transcription site (Supplementary Fig. 6). Indeed, the 
number of nascent mRNAs present at the transcription site for func-
tionally related genes was not correlated any more than for function-
ally unrelated genes (Supplementary Fig. 7).
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between three genes encoding subunits of RNA 
polymerase II. Errors indicate s.e.m.
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Figure 6 Correlation between transcripts from  
two alleles of a constitutively active gene, MDN1, 
in diploid cells. (a) Schematic diagram of the  
PP7 array inserted in the 3  untranslated region  
of one of the two endogenous MDN1 alleles.  
(b) Transcripts from both alleles were detected with 
cyanine 3–labeled probes hybridizing to the coding 
region of MDN1 (green). Transcripts from Allele 2  
(yellow) were distinguished with colocalizing 
signals from cyanine 3.5–labeled probes against 
11 binding sites in the 24 × PP7 array (red). The 
scale bar in the DIC image is 1 m. (c) Heat map 
of number of transcripts from two MDN1 alleles 
in 217 diploid cells. The correlation coefficient (r) 
between transcripts from two alleles in the same 
cell was 0.33  0.04. The distribution of mRNAs 
per cell for each allele across the population is 
depicted by the marginal histograms: MDN1 = 6.6   
0.3, MDN1 = 4.0 (top); MDN1-PP7 = 4.8  0.3, 

MDN1-PP7 = 2.8 (right). Error bars indicate s.e.m.
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Modeling reveals that weak correlations arise from cell division
To understand the source of weak correlations, we modified the 
mathematical framework based on a gene activation and inactivation 
model to obtain an exact solution for joint mRNA distributions34,35. 
In this model, a gene randomly switches between an active ‘on’ state 
and an inactive ‘off ’ state, likely corresponding to chromatin modifi-
cations36. Because our investigation was limited to genes transcribing 
‘constitutively’ (independent initiations distributed in time), rather 
than in bursts (multiple initiations during infrequent on states), we 
assumed that genes were always in the on state. We validated this 
assumption by quantifying the number of nascent mRNAs as a direct 
measure of transcriptional activity for all genes considered in this 
study24 (Supplementary Fig. 6). Accordingly, in our model, indi-
vidual transcripts initiate independently and with a constant prob-
ability over time. Two variable parameters needed to describe the 
mRNA distribution of each gene, initiation rate (ki) and decay rate 
(kd), were calculated from the experimentally measured mean tran-
script number ( ) and previously reported half-life measurements 
(t1/2), respectively (Supplementary Table 1). In addition, a binomial 
process was used to divide transcripts from the mother cell between 
two daughters at cell division37.

We used this framework to obtain exact analytical solutions for 
mRNA distributions and pairwise correlations between different 
genes in a cell by solving the master equation (see Online Methods). 
As an example, Figure 7a shows that distributions predicted by our 
model (black line) are in excellent agreement with measured distri-
butions for TAF6 and TAF12 mRNAs (blue bars). Our model pre-
dicted an r value of 0.1 between TAF6 and TAF12 mRNAs within 
the same cell, consistent with the experimentally measured r value of  
0.18  0.06. Next, we used our model to calculate pairwise correlation  
coefficients for a wide range of mRNA mean and half-life times 
(Fig. 7b). We found that the correlation between mRNAs of consti-
tutive genes increases with mean abundance. Furthermore, longer 
half-life buffers the mRNA abundance in a cell against fluctuations, 
leading to a higher correlation.

Next, we did Monte Carlo simulations with a fixed transcript mean 
but different half-life times. Figure 7c shows the simulated time traces 
for two genes (red and blue lines) with a mean of 25 transcripts per cell 
and half-life of 5 min. The average of 100 simulated time traces (green 
line) is plotted along with the exact analytical solution (black line) 

to the master equation (see Online Methods). The results show that 
transcripts with short half-lives reach their steady-state value (ki/kd) 
soon after cell division. On the other hand, the time constant (1/ kd) to 
reach steady-state transcript levels is much longer for two genes with 
longer half-lives (t1/2 = 40 min) (Fig. 7d). As a result, mean transcript 
levels of both genes are moving toward their steady-state values during 
the entire 90-min cell cycle. To verify that mean mRNA abundance 
increases with time during the cell cycle, we divided the cells into three 
different cell cycle stages based on morphology: G1, S and G2/M. As 
expected, the mean mRNA abundance increased as cells progressed 
through the cell cycle (Fig. 7e,f and Supplementary Fig. 8).

Because our model suggests that the observed correlations are simply 
due to the synchronizing effects of cell division, we predicted that 
correlations would decrease in cells with extremely long cell cycles. To 
test this prediction, we measured the correlation coefficient between 
MDN1 and PRP8 in cells with a doubling time of 14 h (Supplementary 
Fig. 9). The cells were grown in a chemostat in minimal medium 
supplemented with limiting concentrations of glucose to achieve the 
desired doubling time38. As predicted by our model, MDN1 and PRP8 
mRNA levels were uncorrelated (r = 0.05  0.05) in these cells, in con-
trast to the weak correlation (r = 0.26  0.05) observed in cells with a 
90-min cell cycle (Fig. 4b and Supplementary Fig. 9b).

In summary, our model shows that cell division is a global factor 
that affects transcripts of all genes by perturbing them from their 
steady state levels. After each cell division, transcripts of all genes 
begin to accumulate until their abundance, on average, doubles before 
the next division (Fig. 7c–f and Supplementary Fig. 8). Notably, weak 
correlations between transcripts of functionally related or unrelated 
genes arise from the fact that in an asynchronous population, some 
cells at the beginning of the cell cycle have fewer transcripts compared 
to other cells near the end of the cell cycle. Beyond this effect of 
sampling an asynchronous population on the measured correlation, 
we do not observe any coordination in the expression of functionally 
related or unrelated genes.

DISCUSSION
In this study, we have combined single-mRNA counting with math-
ematical modeling to provide fundamental insights into how an indi-
vidual cell accomplishes what is thought to be one of its most crucial 
tasks—coordinating gene expression.
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Figure 7 Stochastic model predicts correlation coefficients from mean mRNA abundance and half-
life times. (a) TAF6 and TAF12 mRNA distributions determined by FISH (blue bars) and analytical 
theory (black line). (b) Correlation coefficient as a function of mRNA half-life for various abundance 
levels. The analytical solution was obtained by solving the master equation. (c,d) Response to 
perturbation in the number of mRNAs as a result of cell division depends on the mRNA half-life. 
Gene 1 (red) and Gene 2 (blue) are simulated Monte Carlo time traces of transcript abundances for 
two genes in a single cell over three cell cycles. Analytical solution (black) is plotted along with the 
average of 100 simulations (green). (e,f) Experimentally measured average mRNA abundance of 
TAF6 and TAF12 across three different stages of the cell cycle. Error bars indicate s.e.m.

©
 2

01
1 

N
at

ur
e 

A
m

er
ic

a,
 In

c.
  A

ll 
ri

gh
ts

 r
es

er
ve

d.



NATURE STRUCTURAL & MOLECULAR BIOLOGY VOLUME 18 NUMBER 1 JANUARY 2011 33

A R T I C L E S

Our results reveal that cells transcribe temporally induced genes 
in a highly coordinated manner. Although there was a large variation 
in the magnitude of response to galactose between individual cells, 
the transcript levels of GAL genes within a cell were highly corre-
lated (Fig. 2). These results confirm that measurements at the mRNA 
level are consistent with those obtained in studies where reporter 
proteins were used to show that variation in protein levels of induced 
genes is largely due to cell-to-cell differences in common upstream 
regulators16,17,39. Moreover, the correlation between transcripts of 
GAL genes within individual cells was independent of the galactose 
concentration used for induction (Supplementary Fig. 10). A recent 
assay for quantifying nucleosome occupancy showed that promoter 
activation upon galactose induction corresponds to the removal of 
nucleosomes flanking the UAS of GAL genes and coincides with 
recruitment of the transcriptional machinery to GAL promoters40. 
We note that a slightly lower correlation between GAL1 and GAL7 
compared to GAL1 and GAL10, despite common upstream regulation, 
most likely underscores the importance of chromatin remodeling35. If 
two promoters were activated independently, the probability of both 
promoters being ‘on’ would equal the product of their individual prob-
abilities. However, the probability of a cell transcribing both GAL1 
and GAL10 is higher than the product of their individual probabili-
ties (Fig. 1c). This result is consistent with the fact that the rate-
limiting step of activating the GAL1 and GAL10 promoters through 
nucleosome removal is mediated by a single UAS common to both 
promoters. On the other hand, the probability of GAL1 and GAL7 
switching on together is slightly lower, because their promoters are 
activated independently through derepression of Gal4p at similar but 
distinct UAS. In order to decouple the GAL1 and GAL10 promot-
ers, we introduced independent rate-limiting steps in the activation 
of these two genes. In wild-type cells, histone H2A variant H2A.Z 
destabilizes the +1 and −1 promoter nucleosomes and is thought to 
promote gene activation by exposing the transcription start site41. 
We found that deletion of HTZ1, the gene encoding H2A.Z, led to 
decreased expression of GAL1 and GAL10 and reduced the correlation 
between these two genes to a value closer to the correlation between 
GAL1 and GAL7 (Supplementary Fig. 11). These results suggest that 
common upstream regulation through transcription factors as well as 
chromatin structure provides a robust way to maintain equal numbers 
of transcripts for these genes, regardless of induction conditions.

Unlike induced genes, which are activated synchronously during 
a well-defined time interval by an upstream signal, the transcription 
of constitutive genes is achieved by independent initiation events 
with a constant probability over time. Notably, even transcripts 
from two endogenous alleles of MDN1, with identical promoters, 
were uncorrelated after accounting for the synchronizing effects 
of cell division (Fig. 6c). Moreover, transcripts of several classes 
of functionally related and unrelated constitutive genes in indi-
vidual cells were uncorrelated (Figs. 4b–d and 5). These results 
show that individual cells are unable to coordinate the expression 
of constitutive genes because of inherently stochastic fluctuations 
in transcription initiation.

A simple model with only two free parameters is sufficient to 
describe mRNA variation for constitutive genes in yeast (Fig. 7a). 
We note that our model slightly underestimates the experimentally 
 measured correlation coefficients. More accurate assessment of tran-
script half-lives would improve these predictions. It is also possible 
that the discrepancy arises from the fact that our model assumes tran-
scription to be a homogenous Poisson process and does not account 
for gene duplication before cell division. Nevertheless, our model 
confirms that weak correlations between constitutive genes within a 

wide range of transcript means and half-lives reflect the lower limit of 
extrinsic variability due to cell growth and division17 (Fig. 7b).

How, then, are cells able to carry out complex functions in a pre-
dictable and coordinated manner when the transcriptional output of 
constitutive genes is essentially random? It has been suggested that 
in higher eukaryotes, fluctuations in mRNA levels are filtered out at 
the protein level by long protein half-lives35,42. In yeast, however, the 
average protein half-life is only twice as long as the average mRNA 
half-life43,44. Therefore, protein half-lives only partially explain the 
low variation observed for functionally related proteins8,18,20,21. There 
are several passive and active means to achieve predictable outcomes 
from a stochastic system. It is, in fact, possible to build a multi-protein 
complex in a predictable amount of time even if the abundance of 
each of its subunits varies substantially. Whereas the duration of each 
binding step might vary because of fluctuations in protein quanti-
ties, these fluctuations average out when they are added sequentially 
to produce the full complex. More generally, any biological process 
can be passively rectified against stochastic fluctuations, because the 
central limit theorem predicts that variability in the total duration of 
a process decreases with increasing number of intermediate steps.

There are also active models that could compensate for the lack of 
coordination in mRNA abundance. One possibility is that in order to 
yield predictable outcomes, cells impose checkpoints until all condi-
tions for further progress are satisfied. Assembly of proteasomes, for 
example, is guided by various chaperones that ensure correct incor-
poration of each subunit in a specific order45,46. Chaperones could 
also act to stabilize the intermediate complexes and ensure that they 
do not dissociate while ‘waiting’ for the next subunit. In this way, 
cells can guarantee a predictable outcome, but not the time it takes 
to achieve it.

Post-transcriptional gene regulation might also play an important 
role in optimizing the expression of each subunit for efficient assembly 
of complexes. Efficient regulation requires fast responses to transient 
variations in protein levels. Therefore, it seems reasonable to control 
protein abundance by tuning the latest possible step of the produc-
tion process. Post-transcriptional or even post-translational regula-
tion would provide much quicker responses compared to initiating the 
much longer process of transcription. RNA binding proteins have been 
implicated in coordinated regulation of many post-transcriptional 
steps in the expression of functionally related genes47–49. Indeed, genes 
that encode subunits of stoichiometric complexes are thought to have 
similar transcript and protein decay rates43,44.

Our perception of transcription has been influenced over the last 
half century by bacterial models where gene activity is regulated by its 
end product. Since the discovery of the lac operon in Escherichia coli, 
genes have been viewed as finely tuned thermostats that constantly 
sense and counter changes in the environment with a precisely coor-
dinated response50. Although there are examples of highly regulated 
gene networks in various organisms that support this view, it cer-
tainly cannot be generalized to constitutive genes. The experimental 
and modeling results presented here suggest that execution of gene 
expression programs, particularly at the level of mRNA, is not always 
precisely coordinated. Many constitutive genes in yeast are essentially 
clueless entities that produce transcripts with a constant probability 
over time, irrespective of the necessary concentrations of the final gene 
product. Whether genes can sense and regulate their end product or 
whether they act autonomously leads to profoundly divergent modes 
of transcription, and hence assembly, of essential complexes. The 
results presented here suggest a fundamental shift in the way we must 
think about coordination of biological processes within a cell. Cells 
have evolved very simple modes of gene expression that require much 
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less coordination than previously thought. Therefore, the regulation 
of precise stoichiometry must occur post-transcriptionally, and likely 
post-translationally. Determining the level of post-transcriptional con-
trol for many of these genes will show whether active processes further 
regulate the expression of genes encoding protein complexes or if the 
downstream processes are just as ‘clueless’ as transcription.

METHODS
Methods and any associated references are available in the online 
version of the paper at http://www.nature.com/nsmb/.

Note: Supplementary information is available on the Nature Structural  Molecular 
Biology website.
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ONLINE METHODS
Cell culture. Yeast cells (w303 haploid or diploid) were grown in YPD medium 
at 30 °C to an optical density at 600 nm (OD600) of 0.5. For galactose induction, 
cells were grown in yeast extract, peptone and 2% (w/v) raffinose at 30 °C to 
OD600 of 0.5. The cells were then induced by adding 20% (w/v) galactose to the 
cell culture to a final concentration of 2% (w/v) for 15 min.

PP7 strain creation. An array of 24 RNA hairpins from bacteriophage PP7, the 
kanamycin-resistance gene for selection, and the CYC terminator were inserted 
in the 3  untranslated region of one of the MDN1 alleles in diploid w303 yeast 
cells by homologous recombination.

DHTZ1 strain creation. The 405-bp open reading frame of the HTZ1 gene 
was replaced with a kanamycin-resistance gene in haploid w303a yeast cells by 
homologous recombination.

In situ probes. Five or six oligodeoxynucleotide probes for each gene were 
designed, synthesized and labeled as described previously22. Each probe was 
50–53 nt long and contained five amino-modified nucleotides (amino-allyl T). 
The free amines were chemically coupled to cyanine 3 or cyanine 3.5 fluorescent 
dyes after synthesis. The sequences for probes used to detect the mRNA of genes 
in this study are provided in Supplementary Methods.

Fluorescence in situ hybridization. Multiplexed FISH was used according to the 
procedure outlined previously24. Cells were fixed by adding 32% (v/v) paraform-
aldehyde to the culture to a final concentration of 4% (v/v) for 45 min at room 
temperature. After the fixative was washed away, the cell wall was digested with 
lyticase (Sigma). The cells were then attached to poly-L-lysine (Sigma)–coated 
coverslips and stored in 70% (v/v) ethanol at −20 °C. Stored coverslips were 
 rehydrated and inverted onto 20 l of hybridization solution containing a mixture 
of probes for two genes, one labeled with cyanine 3 and the other with cyanine 3.5.  
The cells were hybridized overnight at 37 °C and washed. The nuclei were stained 
with DAPI and the coverslips were then mounted with ProLong Gold antifade 
reagent (Invitrogen).

Image acquisition. Images were acquired on an Olympus BX61 epifluorescence 
microscope with a UPlanApo 100×, 1.35 numerical aperture oil-immersion 
objective (Olympus). An X-Cite 120 PC (EXFO) light source was used for illumi-
nation, with filter sets 31000 (DAPI), 41001 (autofluorescence), SP-102v1 (Cy3) 
and SP-103v1 (Cy3.5) (Chroma Technology). Vertical stacks of 30 images with a z 
step size of 0.2 m were acquired using a CoolSNAP HQ camera (Photometrics) 

with a 6.4 m pixel size CCD. IPLab (BD Biosciences) software platform was used 
for instrument control as well as image acquisition.

Data analysis. Three-dimensional image stacks were reduced to two-dimensional 
images by maximum intensity projection along the z axis. A previous implemen-
tation of the Gaussian mask algorithm in IDL (ITT Visual Information Solutions) 
was used to compute the location and intensity of diffraction-limited fluores-
cence signals from individual mRNAs. Cellular boundaries were defined by a 
hand-drawn mask, and nuclei were segmented by thresholding the DAPI signal 
in IPLab. Outputs from the Gaussian mask and segmentation algorithms were 
combined with custom made software in IDL to generate+ single-cell expression 
profiles containing the abundance, locations and signal intensities of mRNAs 
for each gene in a cell. The single-cell mRNA distributions were then used to 
calculate the correlation coefficient (rx,y) between gene X and Y: 

r
x y

x y

i x
i

i y

x y
,

( )( )

where xi and yi are the mRNA abundances of genes X and Y, resprctively, in cell 
i. and represent the means and s.d., respectively, of mRNA distributions of 
genes X and Y.

Mathematical modeling. A Markovian model for gene expression based on a ran-
dom birth-and-death process has been described previously34. The model has been 
used to calculate steady-state mRNA distributions in mammalian cells as well as 
yeast24,35. We modified this model to account for binomial partitioning of mRNAs at 
cell division and obtained mRNA abundances for multiple genes in the same cell.

We obtained an exact analytical solution for the time-dependent mRNA distri-
butions in a cell by solving the master equation (see Supplementary Methods). 
The mRNA abundance at any given time follows a Poisson distribution with 
a mean that varies over the cell cycle51 (Fig. 7c,d). We then obtained a time-
 averaged distribution of mRNA abundance for each gene to describe the experi-
mentally measured mRNA distributions (Fig. 7a). The time-averaged mRNA 
distributions were used to calculate the mean, variance, covariance and correla-
tions for mRNAs of genes with various sets of ki and kd parameters (Fig. 7b). 
Simulated time traces for mRNA abundance and pairwise correlations between 
different genes in a cell were obtained from Monte Carlo simulations done in 
Matlab 7.0.1 (The Mathworks).
51. Paulsson, J. & Ehrenberg, M. Noise in a minimal regulatory network: plasmid copy 

number control. Q. Rev. Biophys. 34, 1–59 (2001).
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