Growing Up Healthy
How Einstein Is Helping City Kids
For at-risk children, intervening early in their lives can make a world of difference. Read about Einstein’s efforts to help city kids grow up healthy. Pictured on this page are babies from the Healthy Steps program. See page 24 to learn more.
A Message from the Dean

For the first time in many years, health experts fear that today’s children may not live as long as their parents.

A major reason is the epidemic of childhood obesity sweeping the country. It is already producing dire consequences, including increases in cases of type 2 (formerly called “adult onset”) diabetes among young people as well as high blood pressure and other risk factors for premature heart disease.

“Growing Up Healthy: How Einstein Is Helping City Kids,” the cover story of this issue of Einstein magazine, shows how Einstein is helping reverse the trend toward childhood obesity through programs that encourage kids to exercise and adopt healthier diets. The article also highlights other child-centric Einstein initiatives, including an asthma prevention effort and a program that supports the social and emotional development of children.

Children are also the subject of this issue’s “Einstein Editions.” It offers an excerpt from a new book by Robert Marion, a pediatric geneticist who heads Einstein’s Department of Institutional Advancement. Marion, who is the new endowed professorships and our faculty members deserve to be celebrated. That’s exactly what we did this year on the occasion of Haiti’s devastating earthquake. We look forward to hearing from you.

Letters to the Editor

I particularly liked the well-written feature articles and excellent accompanying photographs. I also appreciated your focus on the “human side” of Einstein’s students (the two women who had children as medical students) and faculty (the nonmedical books published by Einstein professors). Finally, your writers clearly described the Einstein faculty’s cutting-edge scientific research.

I look forward to reading future issues.

Amy N. Lipton
Greenwich, CT

In his work on this disorder with Drs. Morell and Scheinberg, Dr. Sternlieb contributed expertise in liver morphology—particularly in electron microscopy—that helped define the pathology and mechanism of copper-induced liver injury. He also meticulously studied the natural history of the disease and, together with Dr. Scheinberg, developed successful methods to treat Wilson disease by removing copper from the body with the chelating agent D-penicillamine.

Dr. Sternlieb was associate director of the Marion Bessin Liver Research Center—the first digestive diseases center in the United States to be supported by the National Institutes of Health—from its inception in 1974 until his retirement in 1993. In 1996 he received the Distinguished Achievement Award of the American Association for the Study of Liver Diseases in recognition of his outstanding contributions.

A quintessential clinician, teacher and academic scholar, Dr. Sternlieb is sorely missed by his many colleagues.

Irwin M. Arias, M.D.
Visiting Professor, Department of Medicine (Hepatology)

David A. Shfritz, M.D.
Professor, Departments of Medicine, Cell Biology and Pathology
Director, Marion Bessin Liver Research Center

Please e-mail us at editor@einstein.yu.edu.

Appreciate Your Focus on the Human Side

I commended you and your team on your revamping of Einstein. The Summer/Fall issue was engaging and highlighted the breadth of student, faculty and alumni interests and pursuits.

Donato Vaccaro
Bronxville, NY

In the “In Memoriam” section of the Summer/Fall 2009 issue of Einstein magazine, you reported the recent passing of two eminent members of the original faculty, Anatol Morell, M.D., and I. Herbert Scheinberg, M.D. They made seminal contributions to the diagnosis and treatment of Wilson disease, a fatal hereditary degenerative disease of copper metabolism that affects the liver and brain. You should also have noted the death of a third member of that research team: Irvin Sternlieb, M.D., who died on October 27, 2008.

Dr. Sternlieb came to Jacobi Medical Center as a founding resident and became a postdoctoral research fellow at Einstein in 1957. He was promoted to assistant professor of medicine in 1961, to associate professor in 1967 and to professor of medicine in 1972. He was an internationally recognized hepatologist and authority on copper metabolism, particularly with respect to Wilson disease.

Honoring Dr. Sternlieb

In the “In Memoriam” section of the Summer/Fall 2009 issue of Einstein magazine, you reported the recent passing of two eminent members of the original faculty, Anatol Morell, M.D., and I. Herbert Scheinberg, M.D. They made seminal contributions to the diagnosis and treatment of Wilson disease, a fatal hereditary degenerative disease of copper metabolism that affects the liver and brain. You should also have noted the death of a third member of that research team: Irvin Sternlieb, M.D., who died on October 27, 2008.

Dr. Sternlieb came to Jacobi Medical Center as a founding resident and became a postdoctoral research fellow at Einstein in 1957. He was promoted to assistant professor of medicine in 1961, to associate professor in 1967 and to professor of medicine in 1972. He was an internationally recognized hepatologist and authority on copper metabolism, particularly with respect to Wilson disease.

Donato Vaccaro
Bronxville, NY

In the “In Memoriam” section of the Summer/Fall 2009 issue of Einstein magazine, you reported the recent passing of two eminent members of the original faculty, Anatol Morell, M.D., and I. Herbert Scheinberg, M.D. They made seminal contributions to the diagnosis and treatment of Wilson disease, a fatal hereditary degenerative disease of copper metabolism that affects the liver and brain. You should also have noted the death of a third member of that research team: Irvin Sternlieb, M.D., who died on October 27, 2008.

Dr. Sternlieb came to Jacobi Medical Center as a founding resident and became a postdoctoral research fellow at Einstein in 1957. He was promoted to assistant professor of medicine in 1961, to associate professor in 1967 and to professor of medicine in 1972. He was an internationally recognized hepatologist and authority on copper metabolism, particularly with respect to Wilson disease.

Donato Vaccaro
Bronxville, NY
Aftershocks of Haiti Earthquake Reach Einstein Community

Haiti is 1,500 miles from the Bronx. But Einstein has responded to the devastating January 12 earthquake as if those suffering its effects were next-door neighbors. The following firsthand accounts show how three Einstein community members reached out to family and friends after the magnitude 7.0 disaster.

For some members of the Einstein community, the news was grim on a personal level. Mahalia Desruisseaux, M.D., assistant professor in the departments of pathology and of medicine, lost her aunt, a 28-year-old cousin and her cousin’s son to the disaster. The earthquake also destroyed her childhood home in Pétionville, where family members still lived. (Dr. Desruisseaux came to the United States with her parents when she was 12.)

"I feel so sick and helpless watching the 24/7 news coverage," she wrote in a January 20 e-mail. "After not having been back to Haiti for 24 years, I feel a strong urge to return and be part of a medical relief effort." Dr. Desruisseaux left for Haiti the next day and began working at a private hospital in the Sacré-Cœur section of Port-au-Prince. "There were a lot of people with wound infections, of course, but still a lot of broken bones and quite a few dehydrated adults and children," she recalls. For one of Dr. Desruisseaux’s patients, who came to the clinic due to shortness of breath and a cough, the earthquake may prove to be a lifesaver.

"I came across a young lady with a very severe congenital heart condition who will likely die in the next couple of years, if not sooner, if she doesn’t get surgical intervention," Dr. Desruisseaux wrote in an e-mail from Haiti. "I am desperate to help her. She is a lovely young lady." Since returning to New York, Dr. Desruisseaux has been trying to arrange for her patient to come to the United States for the operation she needs, and has called for medical supplies to be flown back to Haiti.

Roger Duvivier, M.D., ’74, associate professor of obstetrics & gynecology and women’s health, headed to Haiti soon after the quake to help with relief efforts and to check on his mother, sisters, brother and extended family.

"Arrived in Port-au-Prince on Mon. 1-18-2010 and got to see, hear and feel what hell on earth is," he wrote in a January 19 e-mail. "The devastation, destruction, death and suffering are overwhelming and seem to me beyond what common mortals or all the powers of the world combined will be able to handle or manage in months or years to come."

Dr. Duvivier concluded his January 19 message by thanking “all my Einstein family on behalf of my Haitian family for their outpouring of unconditional love and immeasurably strong support. We are quite touched and deeply grateful.” Fortunately, Dr. Duvivier found that his family members, numbering more than 30, were all safe. On January 25, he was able to report that 13 of them, in a long convoluted story, exodus and odyssey,” had been evacuated from Port-au-Prince to Guatemala, and that 9 of them had made their way from Guatemala to the United States and Canada.

Einstein students have organized a money drive (more than $10,000 collected), put on a bake sale and set out collection bins for canned goods, clothing and medical supplies. They plan to sell T-shirts and conduct a “spare change” coin drive. And the popular Einstein Jazz Ensemble performed a benefit concert, sponsored by Einstein’s Global Health Center, to support Einstein's efforts to provide desperately needed aid for Haitians.

“Arrived in Port-au-Prince on Mon. 1-18-2010 and got to see, hear and feel what hell on earth is.”

Dr. Duvivier, who came to the clinic due to shortness of breath and a cough, the earthquake may prove to be a lifesaver.

“After not having been back to Haiti for 24 years, I feel a strong urge to return and be part of a medical relief effort.”

For Jazz Ensemble conductor Alex Pyronneau, a second-year Medical Scientist Training Program student, the show had personal meaning: before taking the stage, he told the audience that “my father’s brother is still among the missing, and while we hold out hope, with each passing day those hopes grow dimmer.” Alex’s uncle was later found alive and well.

Money raised through Einstein’s many efforts will support Partners in Health, the not-for-profit health organization established by Paul Farmer, M.D., Ph.D., professor in the department of global health and social medicine at Harvard Medical School and a speaker at Einstein’s recent global health symposium. Einstein students and faculty members have ties with Dr. Farmer’s organization, which has provided health-care services throughout Haiti for more than 20 years and is well established in the island nation. Partners in Health is considered among the best-equipped groups to provide care to those who need it.

First in the Field

Two days after the Haitian earthquake, Einstein alumnus Mitchell Schwaber, M.D. ’91, was already there—one of the very first responders. The Israeli army needed an infectious disease expert to help in its field hospital. As director of Israel’s National Center for Infection Control, Dr. Schwaber was a natural choice.

He and his colleagues were soon practicing medicine in tents, and the patient load was staggering. Over the next two weeks, the hospital staff treated more than 1,000 patients, performed more than 300 operations and delivered 16 babies.

Eventually, the nature of the medical problems shifted from urgent to chronic, and the mission was declared over on January 27. Remaining patients were transferred to other facilities, and the hospital staff departed—leaving behind some 30 tons of desperately needed medical equipment.

Additional details about Dr. Schwaber can be found in the Class Notes on page 56.
Students and Faculty Concur: Einstein Deserves High Marks

Two recent surveys confirm what we knew all along—that Einstein is a great place to learn and to work.

Grads Give Einstein Education Top Grades. Each year the Association of American Medical Colleges (AAMC) asks graduating med students nationwide to assess the quality of their medical education. Results from the 2009 AAMC Graduation Questionnaire are in—and Einstein grads (76 percent of the Class of 2009 participated) had a positive opinion of their alma mater.

Nationally, 87 percent of newly minted physicians were satisfied or very satisfied with the quality of their medical education (a 4 percent decline from the 2008 survey results). Countering this trend, 90 percent of the Einstein grads who responded were satisfied or very satisfied—up from 87 percent in 2008. “Overall, I’d say I’ve had a rather great education,” wrote one member of the Class of ’09.

Several questions related to the quality of career advisement—and here again, Einstein measured up. For example, 76 percent of the Einstein respondents (and 75 percent nationally) were satisfied or very satisfied with their access to the dean of students, and 71 percent of Einstein’s respondents (vs. 69 percent nationally) were satisfied or very satisfied with their administration’s responsiveness to student problems.

“I felt that the Office of Student Affairs was there for me throughout the entire process of applying to residency,” one grad wrote. “I was aware of where I stood in terms of competitiveness, which is the best way to face this process.”

Nadine T. Katz, M.D., Einstein’s associate dean for students, credits Einstein’s commitment to the students and recognizes that career selection is an important role of communication skills and a trusting doctor/patient relationship play in defining good health care.”

Survey respondents who rated Einstein were readers of The Scientist, science, and one of the nation’s most prestigious honorary societies, inducted Robert H. Singer, Ph.D., professor and cochair of anatomy and structural biology and codirector of the Gruss-Lipper Biophotonics Center. The AAAS recognizes individuals across many academic disciplines, the arts, business and public affairs; Dr. Singer was honored for his work on RNA and how it is expressed and transported within the cell. “We’ve developed a technology that allows us to see what’s going on in the cell, whereas before, we could only deduce,” he says. The technology, which allows tissue to be viewed without being destroyed, may someday lead to the study of genes in living animals.

Dr. Singer joined 230 other newly elected fellows at the induction ceremony in Cambridge, MA. The ceremony held special meaning for him: He was following in the footsteps of his father, a neuroscientist, who was inducted several decades ago.

Campus Master Plan Moves Forward

In the past year alone, two new Einstein facilities have gotten makeovers—one for researchers, the other for clinicians. It’s all part of Einstein’s Campus Master Plan to make the most effective use of existing facilities.

Big Magnet on Campus. The 19,000-square-foot Gruss Magnetic Resonance Research Center (MRRC) received the first Philips 3T TX MRI system to be installed in the United States. (The photo shows the Philips system on its way to its new home.)

“The new technology will collect images twice as fast as before and in greater detail, which will help us better understand disease processes in patients with symptoms,” says Craig A. Branch, Ph.D., the MRRC director.

In addition, he notes, the MRRC is better able to handle and process data and has hired new staff members who are expert at extracting the important parameters from computer data. The MRRC also now houses a completely renovated Varian 9.4T MRI magnet for animal imaging.

The MRRC renovations were made possible by generous gifts from the Gruss Lipper Family Foundation.

Career “Speed Networking”

More than 60 alumni representing 27 specialties returned to campus to provide career advice to about 150 second- and third-year students at the Career Speed Networking Brunch on Sunday, November 15. Seated at tables in the Lubin Dining Hall, the alumni offered informal career advice to the students, who moved from table to table every 15 minutes. Cosponsored by the Office of Alumni Relations and the Office of Student Affairs for the third consecutive year, the popular event is on its way to becoming an Einstein tradition.

Practice Makes Perfect Doctors.

Across campus in the Van Etten Building, the 23,000-square-foot Ruth L. Gottesman Clinical Skills Center opened this fall. Complete with true-to-life examining rooms and real patients (or actors trained to portray patients with particular symptoms), the Clinical Skills Center gives students a chance to practice in a realistic setting before meeting their first real patients.

“While I was a medical student at Einstein, I began to appreciate the important role communication skills play in defining good health care,” recalls Felise Beth Miller, M.D. ’88, director of the center’s Clinical Skills Assessment Program. “Now we can provide this experience for all Einstein students in a state-of-the-art facility with wonderful equipment in an ideal setting.”

The Clinical Skills Center was created with a generous gift from Dr. Ruth L. Gottesman, chair of the Einstein Board of Overseers, and her husband, David S. Gottesman.

Dr. Singer Inducted into the AAAS

On October 10, 2009, the American Academy of Arts and Sciences, one of the nation’s most prestigious honorary societies, inducted Robert H. Singer, Ph.D., professor and cochair of anatomy and structural biology and codirector of the Gruss-Lipper Biophotonics Center. The AAAS recognizes individuals across many academic disciplines, the arts, business and public affairs; Dr. Singer was honored for his work on RNA and how it is expressed and transported within the cell. “We’ve developed a technology that allows us to see what’s going on in the cell, whereas before, we could only deduce,” he says. The technology, which allows tissue to be viewed without being destroyed, may someday lead to the study of genes in living animals.

Dr. Singer joined 230 other newly elected fellows at the induction ceremony in Cambridge, MA. The ceremony held special meaning for him: He was following in the footsteps of his father, a neuroscientist, who was inducted several decades ago.

Einstein Gets Superior Ranking from The Scientist. It’s been no secret among researchers here on campus, and now the world knows too: Albert Einstein College of Medicine is one of the best places in academia to work. The Scientist magazine rated 94 U.S. academic institutions on job satisfaction, peers, management/policies, teaching/mentoring, tenure/promotion and other criteria, and ranked Einstein third in the nation.

Survey respondents who rated Einstein were readers of The Scientist who considered themselves “life scientists” and hold permanent positions at Einstein. They voted research resources and management/policies as the school’s greatest strengths.

Dr. Ruth L. Gottesman, chair of the Einstein Board of Overseers, and her husband, David S. Gottesman.

Part of the ceremony was signing the AAAS membership book. Early members included Ben Franklin, Louis Agassiz and John J. Audubon.
Shaking Hands with the Environment

Over the past several years, Yeshiva University has taken several important steps that have made it a more environmentally friendly place. Soon after becoming University President, Richard M. Joel formed the YU energy task force. In November 2007, he joined with 655 other college and university leaders to sign the American College Presidents’ Climate Commitment, an effort to help neutralize greenhouse gas emissions; Yeshiva’s Office of Energy and Sustainability continues to work on initiatives aimed at downsizing YU’s carbon footprint. YU’s College Sustainability Report Card has improved three years in a row, according to the Sustainability Endowments Institute. Other notable efforts include a high-performance new building, below, and a gas-saving ride-share initiative, facing page.

Price Center/Block Research Pavilion Honored for Energy Efficiency

The “jewel of the Einstein campus” glows green inside. The Michael F. Price Center for Genetic and Translational Medicine/ Harold and Muriel Block Research Pavilion was recently designated a “High Performance Building” by the New York State Energy Research and Development Authority (NYSERDA), a public-benefit corporation whose aim is to help New York reduce energy consumption, promote the use of renewable energy sources and protect the environment.

The award goes to institutions whose buildings are designed to perform at an energy efficiency level at least 30 percent above specifications set by the New York State Conservation Construction Code. The building’s energy efficiency measures save an estimated $144,000 annually.

In a November 13, 2009, ceremony in the lobby of the Price Center/Block Research Pavilion, NYSERDA’s associate project manager, John Schott, commended the creators of the building on its “innovative design and engineering” and presented a plaque that made the recognition official. The plaque now hangs in the lobby. Several novel technologies help make the Price Center/Block Research Pavilion so energy efficient. For example, sensors detect the level of light coming in through the large windows and adjust the brightness of the light fixtures accordingly. And the building relies on a chemical cooling system in which lithium bromide in vacuum vessels chills steam, which is then pumped throughout the building.

In presenting the award, Mr. Schott commended the University on its goal to become carbon-neutral. Salvatore Ciampo, senior director of facilities management, explained it another way: “We always aim to ‘do no harm,’ and in this case, the patient is Mother Nature.”

YU Degree for an Einstein Overseer

At Yeshiva University’s annual Hanukkah Dinner, held last December at New York’s Waldorf-Astoria, Yeshiva University President Richard Joel conferred six honorary degrees. The recipients were outstanding members of the University community and beyond who have demonstrated leadership and dedication to education.

One honoree was Einstein Overseer Roger Einiger, who joined the Board in 2005. He currently serves as the Board’s treasurer, chairs its budget and finance committee and is a member of the executive committee; in 2008 he joined the finance and investment committees of YU’s Board of Trustees. YU recognized Mr. Einiger for his dedicated service with an honorary Doctor of Humane Letters degree.

Thank You, Dr. Kuperman

Albert S. Kuperman, Ph.D., may have retired from his position as associate dean for educational affairs on November 30 of last year, but he leaves behind an admirable legacy. Penny Grossman, Ed.D., assistant dean for educational resources, calls Dr. Kuperman the “chief architect of educational change” during his 35-year tenure at Einstein. Dr. Kuperman brought to Einstein a more active case-based teaching style, requiring students not just to show up on time for class and take notes but also to think on the spot and apply their knowledge to the case at hand—the kind of learning that sticks. His students loved him for it. He greatly expanded educational activities outside the required curriculum and is recognized especially for establishing and developing the global health fellowship program.

Another important legacy is the student-run Social Medicine course. Students lobbied for the course’s creation 12 years ago, and Dr. Kuperman gave his strong support. The students honored him at this year’s opening Social Medicine session on January 6 with a memento-filled scrapbook and a standing ovation.

The first session also featured a talk by Joia S. Mukherjee, M.D., M.P.H., assistant professor in the division of global health equity and social medicine, who has similar commutes. Sharing a ride helps the environment and can save on gas, parking, vehicle wear and commuting stress. Not sure GreenRide really matters? Check out GreenRide’s “commuting costs calculator” at http://einstein.greenride.com/CommutingCostCalculator.

Go Green!

Whether your goal is to save money, your sanity or the world, Einstein’s GreenRide program can help. In November the Einstein security department launched the ride-share initiative, designed to pair up carpool partners who have similar commutes. Sharing a ride helps the environment and can save on gas, parking, vehicle wear and commuting stress. Not sure GreenRide really matters? Check out GreenRide’s “commuting costs calculator” at http://einstein.greenride.com/CommutingCostCalculator.

ON THE WEB

To learn more about Einstein’s GreenRide, visit http://einstein.greenride.com

"This university strives to make its imprint seen in many aspects of life. Reducing our carbon footprint is one of many ways that we are vouchsafing for this planet’s future."

– Richard M. Joel
President, Yeshiva University
Tools of the Trade
At the academic year got underway, Einstein’s Alumni Association sponsored three ceremonies for medical students:

White Coat Ceremony. On Monday, August 24, 2009, the Mary and Karl Robbins Auditorium was packed to capacity for the “On Becoming a Physician” ceremony, also known as the White Coat Ceremony. The event stressed the importance of humanism in the medical profession; a highlight was the keynote speech by Tia Powell, M.D., director of the Montefiore-Einstein Center for Bioethics. Students were “cloaked” in white physicians’ coats by 14 alumni. The ceremony was followed by an outdoor cocktail reception in the Forchheimer-Mazer quadrangle. One of the 183 recipients was Nate Brown, who previously wore the uniform of a U.S. Navy enlisted man in Iraq. More recently, he traveled as a civilian a U.S. Navy enlisted man in Iraq. Forchheimer-Mazer quadrangle. One of the 183 recipients was Nate Brown, who previously wore the uniform of a U.S. Navy enlisted man in Iraq. More recently, he traveled as a civilian through post-Katrina New Orleans, chronicling the plight of locals and publishing a book about his experiences there. Afterward, becoming a physician seemed like a logical career choice for him.
“T chose Einstein because they feel, like I do, that you become a doctor to serve others,” Mr. Brown said.

Stethoscope Ceremony. On September 15, Einstein held its “Stethoscopes for Second-Year Students: Becoming a Doctor” ceremony in Robbins Auditorium. As part of the ceremony, Einstein alumni donated a stethoscope to each member of the Class of 2012. The presentation of stethoscopes is an important milestone in the second-year students’ education, when they embark on the physical diagnosis part of their Introduction to Clinical Medicine course. Among the featured speakers was Jack Stern, M.D. ’74, Ph.D. ’75, president-elect of Einstein’s Alumni Association.

Scrubs Ceremony. On October 6, 2009, the class of 2013 took part in Einstein’s Scrubs Ceremony, celebrating their introduction to the Gross Anatomy course. Several alumni, including Harris Goldstein, M.D. ’80, who initiated the Scrubs Ceremony and serves as assistant dean for scientific resources, joined Todd R. Olson, Ph.D., professor of anatomy and structural biology, and Dean Spiegel in addressing the students. The event culminated with Dr. Olson enthusiastically announcing the lab groups the students were in and presenting them with their red scrubs.

Einstein Hosts VIPs
On September 22, 2009, former Uruguayan President Tabaré Vázquez, M.D., came to Einstein and delivered a speech titled “Science, Medicine and Social Commitment.” Trained as a physician, Dr. Vázquez was a rarity among the world’s chief executives in that he continued to see patients during his term in office. His advocacy for health resulted in some notable achievements.
Uruguay, for example, is the first nation in the Americas to be completely smoke-free in all public areas. And Dr. Vázquez implemented social programs that have reduced poverty and improved education.

Pablo Castillo, M.D., Ph.D., a professor in the Dominick P. Purpura Department of Neuroscience, explained later that he and the two other Uruguayan faculty members in the department who had invited Dr. Vázquez to campus—Alberto Emilio Pereda, M.D., Ph.D., professor, and José Luis Peña, M.D., Ph.D., assistant professor—were particularly interested in hearing about an academic physician’s entry into public service and social activism.

Dr. Vázquez said that the same passion to serve humanity that got him into medicine led him into politics. “Science, medicine and politics give us the opportunity, which is also a responsibility, to mold the future,” he said in Spanish. “It’s not enough to just have democracies. We must also have democrats. We must have citizens.”

New York Governor David A. Paterson held a press conference at Einstein on October 8 to highlight the state’s leadership role in supporting stem cell research.

“I have no doubt that this important work will one day lead to the successful treatment of dozens of devastating afflictions that have escaped the grasp of modern medicine,” he said.

New York so far has invested $165 million to fund stem cell research; it is second only to California among states funding such research. Of those funds, $15 million have gone to Einstein scientists, eight of whom took part in a discussion of stem cell advances during Governor Paterson’s visit.

“Our scientists are on the leading edge of medical research, tackling some of the world’s most challenging diseases like liver failure, cancer and heart disease,” said Allen M. Spiegel, M.D., the Marilyn and Stanley M. Katz Dean.

“We applaud the vision and commitment of the governor for supporting stem cell programs.”
Pre-Columbian “Case” Study

The main floor of the D. Samuel Gottesman Library, near the entryway, is the home of a modest display case and its spectacular collection of rare pre-Columbian artifacts: bowls, vases and other items illustrating medical pathology ranging from probable psychosis to multiple neurofibromas.

The pieces were donated by Helmuth Nathan, M.D., who came to Einstein in 1955 as a professor of surgery, was professor and chair of the department of the history of medicine from 1973 to 1978 and died in 1979. Dr. Nathan was also an artist who exhibited his paintings and sculptures in the United States and Israel; his illustrations appeared in many magazines. (He created the bust of Einstein in the lobby of the Siegfried and Irma Ullmann Research Center for Health Sciences and the stained-glass window upstairs in the Max L. and Sadie Friedman Student Faculty Lounge.)

The story Dr. Nathan’s artifacts tell us! The practice of medicine may have vastly changed in two thousand years, but the human condition has not—and today’s scientists and healers still have much work to do.

As we went to press, the case and its precious contents had been moved out of harm’s way during the library renovation. It will soon be back in place.

Making Connections: Alumni Association Phone-a-thon

On six weekday evenings early last November, about a dozen of Einstein’s most enthusiastic students wielded phones in a conference room in Abraham Mazur Hall. It was the annual Alumni Association Phone-a-thon, and the goal was to connect with Einstein alumni and provide the latest news from campus while garnering pledges from the extended Einstein family.

This years’ several thousand calls nearly doubled the level of commitments made during last year’s Phone-a-thon. And the canvassers—a mix of Ph.D., M.S.T.P. and medical students from all four years—reported some interesting conversations.

“These students made meaningful connections with the alumni,” says Emily Snyder, acting director for alumni relations and director of annual giving. “They really enjoyed hearing about and sharing Einstein stories and thanking the alumni for their past and current support of the programs that directly benefit them, such as scholarships, fellowships and student-life programs.”

Einstein alumni who were not phoned can still make pledges; contact Emily at 718.430.2922 or emily.snyder@einstein.yu.edu.

In Memoriam

Ruy Soeiro, M.D., a long-standing member of the Einstein-Montefiore division of infectious diseases, died on August 20, 2009. Dr. Soeiro came to Einstein in 1965 as a postdoctoral fellow and taught medicine, cell biology and immunology. He was a founding member of the division, rose through the academic ranks in the departments of medicine and of microbiology & immunology, and served as co-division chief and division chief at Einstein for many years. In the 1980s and 1990s, he made meaningful contributions to the clinical study of HIV and AIDS.
Hypertension Linked to Dementia in Older Women

Older women with hypertension are at increased risk for developing brain lesions that cause dementia later in life, according to data from the Women’s Health Initiative Memory Study (WHIMS). The findings were published in the December 2009 online issue of the Journal of Clinical Memory Study (WHIMS). The research was conducted as part of the Women’s Health Initiative (WHI), the largest multisite longitudinal study looking at health risks among postmenopausal women. The WHIMS, which involves a subgroup of the women enrolled in the WHI, looks at the influence of hormone therapy on thinking and memory. All the women in the WHIMS were 65 or older.

Magnetic resonance imaging (MRI) studies revealed that women who, on entering the WHIMS trial, had elevated blood pressure (defined as systolic blood pressure ≥ 140 mmHg, or diastolic blood pressure ≥ 90 mmHg, or being on anti-hypertensive drug therapy) had significantly higher amounts of white-matter lesions when they underwent MRIs eight years later.

“Based on our findings, we would encourage women to maintain their blood pressure at normal levels, which may reduce their risk of dementia,” says study coauthor Sylvia Wassertheil-Smoller, Ph.D., the Dorothy and William Mancaloff Foundation & Molly Rosen Chair in Social Medicine and professor of epidemiology & population health. Dr. Wassertheil-Smoller is also the principal investigator of Einstein’s WHI and WHIMS studies.

Blood Protein Offers Help against Anemia

Einstein researchers have found that injections of transferrin, a protein found in blood, alleviates anemia and potentially fatal iron overload in mice with thalassemia, an inherited blood disease that affects millions of people worldwide. If the results can be duplicated in humans, the benefits could extend well beyond thalassemia to include other types of anemia, including sickle cell anemia. The study was published in the January 24 online edition of Nature Medicine.

“People who have thalassemia or other types of anemia need frequent blood transfusions over many years to correct the problem,” says Mary E. Fabry, Ph.D., a professor of medicine at Einstein and a study author. “But the human body has no way to get rid of the massive amount of iron in the transfused blood, and the resulting iron overload—especially its accumulation in the heart and liver—is often fatal. Our study indicates that treatment with transferrin could prevent this.”

In thalassemia, gene mutations lead to underproduction of the globin protein chains that form hemoglobin, the iron-containing, oxygen-carrying molecule in red blood cells. (Normal hemoglobin consists of four globin protein chains—two alpha chains and two beta chains.) Fewer globin chains means iron. People who have thalassemia or beta thalassemia, depending on which of the globin protein chains is affected. In a 2009 study involving beta thalassemia mice at Einstein, Dr. Fabry and her colleagues made a paradoxical observation: Despite the rodents’ anemia and iron overload, injecting them with more iron alleviated their anemia by increasing both hemoglobin and the number of red cells.

This finding indicated that “overload” iron wasn’t accessible for use in making red cells. And it suggested to Yelena Z. Ginsburg, M.D., a postdoc in Dr. Fabry’s lab at the time and a senior author of the present study, that transferrin might help in treating thalassemia.

In the present study, the researchers gave the beta thalassemia mice daily injections of human transferrin for 60 days. The results were impressive. “The injected transferrin killed three birds with one stone,” says Dr. Fabry. “It helped deplete the iron overload and recycled that iron into new red blood cells that ameliorated the anemia. Plus, those cells survived longer.”

Dr. Fabry’s lab at the time and a senior author of the present study, that transferrin might be able to tap into that stored iron.

Transferrin is a crucially important protein responsible for transporting iron in the blood and delivering it to cells that need it—particularly the cells that develop into red blood cells. Dr. Ginsburg, now a researcher at the New York Blood Center in New York City, “hypothesized that too little transferrin in the circulation may account for the reduced red-cell production and anemia observed in beta thalassemia,” says Dr. Fabry. “So she decided to see if injections of transferrin—obtainable as a by-product of blood collection—could help in treating thalassemia.”

In a 2009 study, Dr. Fabry and her colleagues found that injections of transferrin, a protein found in blood, alleviates anemia and potentially fatal iron overload in mice with thalassemia, an inherited blood disease that affects millions of people worldwide. If the results can be duplicated in humans, the benefits could extend well beyond thalassemia to include other types of anemia, including sickle cell anemia. The study was published in the January 24 online edition of Nature Medicine.

“People who have thalassemia or other types of anemia need frequent blood transfusions over many years to correct the problem,” says Mary E. Fabry, Ph.D., a professor of medicine at Einstein and a study author. “But the human body has no way to get rid of the massive amount of iron in the transfused blood, and the resulting iron overload—especially its accumulation in the heart and liver—is often fatal. Our study indicates that treatment with transferrin could prevent this.”

In thalassemia, gene mutations lead to underproduction of the globin protein chains that form hemoglobin, the iron-containing, oxygen-carrying molecule in red blood cells. (Normal hemoglobin consists of four globin protein chains—two alpha chains and two beta chains.) Fewer globin chains means iron.

People who have thalassemia or beta thalassemia, depending on which of the globin protein chains is affected. In a 2009 study involving beta thalassemia mice at Einstein, Dr. Fabry and her colleagues made a paradoxical observation: Despite the rodents’ anemia and iron overload, injecting them with more iron alleviated their anemia by increasing both hemoglobin and the number of red cells.

This finding indicated that “overload” iron wasn’t accessible for use in making red cells. And it suggested to Yelena Z. Ginsburg, M.D., a postdoc in Dr. Fabry’s lab at the time and a senior author of the present study, that transferrin might help in treating thalassemia.

In the present study, the researchers gave the beta thalassemia mice daily injections of human transferrin for 60 days. The results were impressive. “The injected transferrin killed three birds with one stone,” says Dr. Fabry. “It not only helped in depleting the iron overload that can be so toxic, but it recycled that iron into new red blood cells that ameliorated the anemia. Plus, those red cells survived for a longer time because they had fewer defects.”

She and her colleagues are optimistic that transferrin could have similar benefits for people.

Other Einstein researchers involved in the study were Eric E. Bouhassira, Ph.D., Anne C. Rybicki, Ph.D., Sandra M. Suzuki, M.S., and Charles B. Hall, Ph.D.
Do Three Meals a Day Keep Fungi Away?

Most people and other mammals eat a lot and often, which may explain their resistance to most fungal pathogens, according to an Einstein study published in the October 13 online edition of the Journal of Infectious Diseases.

The research showed that the elevated body temperature of mammals—the familiar 98.6°F or 37°C in people—is too high for the vast majority of fungal invaders to survive.

"Fungal strains undergo a major loss of ability to grow as we move to mammalian temperatures," said Arturo Casadevall, M.D., Ph.D., the Leo and Julia Forchheimer Chair in Microbiology & Immunology at Einstein. Dr. Casadevall conducted the study in conjunction with Vincent A. Robert of the University of Utrecht, Netherlands-based Fungal Biodiversity Center, also known as Centraalbureau voor Schimmelcultures.

"Our study makes the argument that our warm temperatures may have evolved to protect us against fungal diseases," said Dr. Casadevall. "Since most of our caloric intake is used to maintain body temperature, eating regularly and often may help in providing this protection."

In their study, the researchers investigated how 4,082 different fungal strains from the Utrecht collection grew in temperatures ranging from chilly—4°C or 39°F—to desert-hot—45°C or 113°F. They found that nearly all of them grew well in temperatures up to 30°C. Beyond that, though, the number of successful species declined by 6 percent for every one degree Celsius increase. Most could not grow at mammalian temperatures.

This stronger immunity to fungi, says Dr. Casadevall, could explain why mammals rose to dominance after the dinosaur extinction event 65 million years ago. Indeed, he notes, the fungal bloom that occurred then may be one reason for the extinction of dinosaurs—a possibility that he outlined in a 2004 paper.

Making “Self-Guided” Drugs

Matthew Levy, Ph.D., assistant professor of biochemistry, has received a grant of more than $700,000 for his high-risk/high-reward cancer research.

Dr. Levy’s work will focus on creating self-guiding drugs that target only cancer cells, thus eliminating or significantly reducing toxic or unpleasant side effects of current chemotherapy agents.

He is one of 13 young scientists nationwide selected to receive a Stand Up To Cancer–American Association for Cancer Research Innovative Research Grant. The program, which gave out a total of $9.68 million, supports the next generation of cancer research leaders.

Dr. Levy’s efforts will center on aptamers, a newer class of targeting molecule that can specifically bind to particular proteins found on the surface of cancer cells. The aptamers will be combined with existing FDA-approved drugs, creating an “aptamer-prodrug” molecule. Upon binding to a target, these molecules will release their drug directly into the cell, thereby minimizing systemic toxicity.

While the immediate focus will be on prostate cancer, the aptamer-prodrug strategy could potentially target almost any type of cancer.

Einstein Researcher Wins Fulbright Award

Lisa Marie Nathan, M.D., M.P.H., assistant professor of obstetrics & gynecology and women’s health, has been awarded a Fulbright Scholar grant for research aimed at reducing Rwanda’s high rate of maternal mortality. Dr. Nathan is the only New York State Fulbright grant recipient in the medical sciences category for the 2009–10 academic year.

Although Rwanda has decreased its maternal mortality rate from the previous World Health Organization estimate of 1,300 maternal deaths per 100,000 live births, the Ministry of Health currently estimates that 750 Rwandan women die for every 100,000 live births, compared to 11 maternal deaths per 100,000 live births in the United States.

The Fulbright grant of up to $36,000 will allow Dr. Nathan to determine the effectiveness of mobile reproductive health-care teams versus community-level birthing services in rural areas of Rwanda. Encompassing 50 villages in the Kibogora area, her research will involve a population of 29,000 people. It will be conducted in conjunction with the National University of Rwanda, local health leaders and Women’s Equity in Access to Care and Treatment (WE-ACTx). Dr. Nathan’s research is modeled on WE-ACTx’s successful delivery of HIV counseling and testing through highly efficient mobile teams.
Father-and-Son Science

In Fathers and Sons, Ivan Turgenev’s classic Russian novel, an aging, conservative physician clashess with his physician-in-training son, who is scornful of authority. At Einstein, the saga of a real-life father-son physician duo is less dramatic—and far more productive.

Joel M. Friedman, M.D., Ph.D., is a professor of physiology & biophysics and of medicine. His son, Adam Friedman, M.D., is a 2006 Einstein graduate and chief resident in the Einstein-Montefiore division of dermatology. They not only get along with each other, but their laboratory collaboration has led to a novel nanoparticle technology with many potential therapeutic applications, from curing antibiotic-resistant staph infections to treating erectile dysfunction.

The Father

Joel believes he was born to be a scientist. “As a kid, I realized I was drastically different from everyone else. I was in pain not knowing why the sky was blue,” he recalls. Fortunately, Joel’s parents nurtured his scientific curiosity. His “desire to do good and to do science,” in Joel’s words, led him to medicine.

Joel obtained an M.D.-Ph.D. degree at the University of Pennsylvania. The bench proved more alluring than the bedside, and Joel eventually landed a coveted research position at the famed Bell Laboratories in New Jersey. A colleague was Steven Chu, who shared the 1997 Nobel Prize in physics and is now the U.S. secretary of energy.

“It was science heaven,” says Joel. “If you woke up with a creative idea, by lunchtime you could pull together a team of theorists for every aspect of your experiment.” At Bell Labs, Joel used Raman spectroscopy to study the structure of biological molecules, leading to insights into the function of hemoglobin molecules. He left when Bell Labs declined as a research powerhouse; after a short stint at New York University, he came to Einstein in 1992.

“The environment here is very much like at Bell Labs,” he says. “The barriers between groups are minimal, and you can walk down the hall and get collaborations going.”

The Son

Like his father, Adam fell in love with science and medicine at an early age. In high school, he volunteered as an EMT and of medicine. His son, Adam Friedman, M.D., is a 2006 Einstein graduate and chief resident in the Einstein-Montefiore division of dermatology. They not only get along with each other, but their laboratory collaboration has led to a novel nanoparticle technology with many potential therapeutic applications, from curing antibiotic-resistant staph infections to treating erectile dysfunction.

The environment here is very much like at Bell Labs,” he says. “The barriers between groups are minimal, and you can walk down the hall and get collaborations going.”

“My dad is pretty much a basic scientist, where I’m more clinically oriented. It’s a good combination.”

— Adam Friedman, M.D. ’06

The Team

The Friedmans’ promising nanoparticle technology is a lesson in luck favoring prepared minds. Several years ago, Joel was searching for a way to study the dynamics of complex proteins such as hemoglobin. Such proteins rarely sit still. They constantly twist and turn, frustrating efforts to visualize them. Joel had a hunch that trapping the proteins in hydrogels might slow them down enough to allow them to be studied. The approach worked—and led Adam, by then nearing the end of medical school, to a eureka moment: if hydrogels could capture molecules, maybe they could release them as well, providing a novel method of delivering drugs or other therapeutic materials.

Joel and Adam immediately focused on harnessing the therapeutic potential of nitric oxide (NO) gas, an important signaling molecule in mammals. In 1992, Science dubbed NO “molecule of the year” for its role in regulating blood vessel dilation and other key processes throughout the body.

Defects in NO production are associated with erectile dysfunction and may underlie conditions such as heart failure, hypertension, diabetes, infection and obesity. Administering NO would seem an obvious solution, but the gas is extremely short-lived: “Once it is produced, NO disappears in a matter of seconds,” explains Joel. If NO could be packaged into nanoparticles, perhaps it could be delivered in carefully calibrated doses precisely where it was needed.

During medical school Adam came up with a mixture of polyethylene glycol, tetramethylethanolitate and chitosan that could capture sodium nitrate, an NO precursor. The resulting composite is dried and milled to form nanoparticles—each smaller than a pollen grain—that release NO on exposure to water.

The nanoparticles can be customized to change their NO release rate or payload size or to carry drugs instead of NO. And they are small enough to penetrate the skin—ideal for locally delivering drugs that cause side effects when taken orally.

“There are so many possible clinical applications of this technology that we hardly know which way to turn,” says Joel.

Together with Einstein’s Joshua Nosanchuk, M.D., associate professor of medicine and of microbiology & immunology, they published two papers last fall describing one of those promising applications: administering NO to treat wound infections and abscesses caused by MRSA (methicillin-resistant Staphylococcus aureus).

And with Kelvin Davies, Ph.D., associate professor in Einstein’s department of urology, the Friedmans published a study in September 2009 showing that NO-releasing nanoparticles have potential as a topical therapy for erectile dysfunction.

Meanwhile, father and son are investigating a variety of other uses for their nanoparticles: treating pulmonary hypertension, malaria, tuberculosis and leishmaniasis; delivering chemotherapy and antioxidants; and protecting against ultraviolet and gamma radiation.

“We’re grateful to Einstein for providing an environment that favors interdisciplinary collaboration,” says Adam. “We wouldn’t have been able to develop our nanoparticle technology anywhere else.”

— Joel M. Friedman, M.D., Ph.D.
Genetic Rounds: A Doctor’s Encounters in the Field that Revolutionized Medicine
by Robert W. Marion, M.D. ‘79
director of Einstein’s Children’s
Evaluation and Research Center (CERC). Ruth L. Gotteman
Professor in Developmental
Pediatrics

How do doctors reach a diagnosis? What are the roles played by science and medicine…art and intuition…even chance and luck?
Anyone who has wanted to get inside the head of a practicing physician confronted by challenging and intriguing cases need only read Genetic Rounds: A Doctor’s Encounters in the Field that Revolutionized Medicine, the latest book by distinguished Einstein alumnus and faculty member Robert W. Marion, M.D.

Each chapter of Genetic Rounds features a child with a different genetic condition. These case studies reveal Dr. Marion’s innermost feelings about his patients and their families, and about medicine in general. They also illuminate his considerable compassion and diagnostic skills.

In April 2009, Dr. Marion was honored by Einstein’s National Women’s Division with its Spirit of Achievement Award in recognition of his outstanding work with children and families at CERC. In December 2009, he received the Zella Bronfman Butler Award, sponsored by the Butler Foundation and given by the UJA Federation of New York, honoring professionals who have improved the lives of individuals with disabilities.

The following excerpt from Genetic Rounds is a close-up look at Dr. Marion’s interaction with one young patient and her mother. (Names have been changed.)

After introducing myself, I asked Mrs. Ludlow if she understood why she and her daughter were seeing me that day. An attractive woman in her mid-thirties, Mrs. Ludlow looked tired.

“The only reason we’re here is because the Committee on Special Education at our school said they need a report from you before they complete their evaluation of Nicole,” she replied.

“Why is she being evaluated by the CSE?” I asked.

“She’s failing third grade. Nicole’s a bright kid. She’s only doing poorly because she’s missed so much school this year. But I’m not sure what you’re supposed to be able to add to this evaluation.” While Mrs. Ludlow spoke, Nicole, her nine-year-old daughter, sat stone still on a chair across from her mother, silently staring into space.

“Sometimes a day or two, sometimes longer,” the mother replied. “The longest lasted nearly four weeks.”

“How long does this last?” I asked.

“Not that I know of,” the woman replied. “So far, Nicole’s been seen by more than a dozen different medical specialists. Not one of them has been able to tell us exactly what’s wrong with her. So I’m not very optimistic that this visit will be any different.”

“I’ll agree it’s not likely that I’ll be able to add much,” I said, suddenly feeling defensive, “but I guess you’re already here and we’ve got nothing to lose by trying.”

As the words were coming out of my mouth, the child began to make a strange noise, a kind of mewing. The noise came from deep inside the girl’s throat.

“Quiet,” Mrs. Ludlow said to Nicole. “Don’t make that noise. That’s a bad noise.”

The girl, still staring off into space, immediately became quiet.

“Not that I know of,” the woman replied. “Nicole’s been seeing one of her attacks a couple of times a year.”

“Do you think Nicole’s condition is terminal?” I asked.

She’s usually sweet. She’s having one of her attacks today. It’s these attacks that are the problem.”

“I’ll agree it’s not likely that I’ll be able to add much,” I said, suddenly feeling defensive, “but I guess you’re already here and we’ve got nothing to lose by trying.”

“As the words were coming out of my mouth, the child began to make a strange noise, a kind of mewing. The noise came from deep inside the girl’s throat.

“Quiet,” Mrs. Ludlow said to Nicole. “Don’t make that noise. That’s a bad noise.”

The girl, still staring off into space, immediately became quiet.

“Not that I know of,” the woman replied. “Nicole’s been seeing one of her attacks a couple of times a year.”

“Sometimes a day or two, sometimes longer,” the mother replied. “The longest lasted nearly four weeks.”

“How long does this last?” I asked.

“Not that I know of,” the woman replied. “So far, Nicole’s been seen by more than a dozen different medical specialists. Not one of them has been able to tell us exactly what’s wrong with her. So I’m not very optimistic that this visit will be any different.”

“I’ll agree it’s not likely that I’ll be able to add much,” I said, suddenly feeling defensive, “but I guess you’re already here and we’ve got nothing to lose by trying.”

“As the words were coming out of my mouth, the child began to make a strange noise, a kind of mewing. The noise came from deep inside the girl’s throat.

“Quiet,” Mrs. Ludlow said to Nicole. “Don’t make that noise. That’s a bad noise.”

The girl, still staring off into space, immediately became quiet.

“At the Committee on Special Education at our school said they need a report from you before they complete their evaluation of Nicole,” she replied.

“Why is she being evaluated by the CSE?” I asked.

“She’s failing third grade. Nicole’s a bright kid. She’s only doing poorly because she’s missed so much school this year. But I’m not sure what you’re supposed to be able to add to this evaluation.” While Mrs. Ludlow spoke, Nicole, her nine-year-old daughter, sat stone still on a chair across from her mother, silently staring into space.

“Why is she being evaluated by the CSE?” I asked.

“She’s failing third grade. Nicole’s a bright kid. She’s only doing poorly because she’s missed so much school this year. But I’m not sure what you’re supposed to be able to add to this evaluation.” While Mrs. Ludlow spoke, Nicole, her nine-year-old daughter, sat stone still on a chair across from her mother, silently staring into space.
said Mrs. Ludlow. “It was terrifying. They gave her all kinds of medications, steroids, antibiotics, but nothing would make her wake up.”

I thought for a minute, trying to understand the relationship between the anesthesia and the illness. Nicole’s story was beginning to remind me of something. “How long did she stay like that?” I finally asked.

“Two weeks. Then one day Nicole just opened her eyes and said ‘Hi, Mommy,’ and that was it, except one side of her face drooped for about a week. Since then, it’s come back a few times.”

“You’re the First to Ask”

The bell inside my head was ringing a little louder now.

“What other problems have occurred during the episodes?”

“Well, see,” Mrs. Ludlow continued. “Sometimes, her speech gets slurred. And insomnia. She can go four or five days without sleeping, and of course, I have to stay awake with her. I’m afraid if I leave her alone, she might wind up hurting herself. And she gets terrible pains all over her body.”

I thought I finally knew what was wrong with Nicole; I needed only one more bit of information. “During these attacks, is there anything unusual about Nicole’s urine?”

“You’re the first person to ask about that,” Mrs. Ludlow answered. “When she’s sick, Nicole’s urine can get so dark that it looks like red wine. Does that mean anything?”

“I sure did mean something: it was the key that unlocked her diagnosis. After hearing Mrs. Ludlow’s answer, I was almost positive that Nicole had porphyria.

A Scholarly Connection

Much as I hate to admit it, my brilliant flash of diagnostic insight wasn’t the result of my being smarter than the dozen other physicians who’d seen Nicole before me. Events in the weeks prior to the Ludlows’ visit had primed me to make a diagnosis of porphyria.

At the time of their visit, I was working on a book about historical figures with genetic diseases. I’d just finished a chapter on England’s King George III, whose reign from 1760 to 1820 had been bookended by innumerable attacks suffered by the royal family. And George III’s death, that two British physicians suggested that the Royal Malady could be explained by a diagnosis of porphyria.

The porphyrias, a group of rare inherited disorders in which an enzyme needed for production of the protein heme (an essential component of red blood cells) is missing, have two features in common. First, because their bodies cannot produce adequate quantities of heme, affected individuals suffer from anemia. Second, because of the block in the pathway through which heme is produced, precursors of heme build up to extremely high concentrations in the blood, making it toxic to the skin, liver, and central nervous system. Acute intermittent porphyria, the form of porphyria that affected George III and the same one I thought was present in Nicole, causes symptoms mainly during times of illness or emotional stress, or following exposure to certain drugs or chemicals. People with AIP suffer from episodes of unexplained aches, unusual neurologic and psychiatric disturbances, and the passage of abnormally dark urine, an effect caused by excessive heme precursor in the urine.

Confirming the Diagnosis

To prove the diagnosis, I had to complete two tasks. First, since it’s inherited in an autosomal dominant fashion, with the mutated gene usually passing from affected parent to affected child, I had to find out which of Nicole’s parents affected parent to affected child, I had to prove that the bore evidence of the biochemical abnormalities that cause the disorder. I turned my attention to the first of these tasks.

“How was your pregnancy with Nicole?” I asked.

“It sure did mean something: it was the key that unlocked her diagnosis. After hearing Mrs. Ludlow’s answer, I was almost positive that Nicole had porphyria.

“Awful,” Mrs. Ludlow replied without hesitation. “In my sixth week, I began having terrible stomach pain. My doctor did an exploratory operation but didn’t find anything. Then about a week later, the pain just went away. Weird.”

I was nearly bursting, realizing Mrs. Ludlow’s unexplained episode of pain most likely represented an attack of porphyria.

Mrs. Ludlow then told me that although her husband and his family were all in excellent health, “my father’s a mess. People think he’s a drunk because he has blackouts, but I know he never takes a drink. And then, his sister, she’s 80, she’s had seizures all her life. Her granddaughter’s been diagnosed with some rare disease—”

“Porphyria?” I interrupted, nearly jumping out of my chair.

“Mrs. Ludlow’s eyes opened wide. “Yes, that’s it. How did you know?”

“Mrs. Ludlow, porphyria would explain all of Nicole’s problems. Since it’s an inherited condition, I’ve been waiting for you to tell me that someone else in your family has been diagnosed with it.”

“If Nicole really does have porphyria, is it something we can do to help her?” she asked.

“Yes, plenty of things. We can’t cure it, but we can prevent her from getting so many attacks.” I outlined the management that would be instituted, starting with immediately stopping the Tegretol.

In Nicole’s case, I was able to come up with the correct diagnosis simply by luck: the Ludlows and I had managed to run into each other in exactly the right place at exactly the right time. From Genetic Round: A Doctor’s Encounters in the Field that Revolutionized Medicine by Robert W. Marion, M.D. (Kaplan Publishing, New York, NY, 2009). Reprinted with permission of the publisher.

A Pop Culture Connection to Porphyria?

Are vampires porphyria patients gone wrong? Could the stars of The Vampire Diaries, True Blood, the Twilight series, Daybreakers and the other vampire-inspired books and movies so popular today—\n\nnot to mention the victims of Buffy the Vampire Slayer herself—\n\nbless a genetic glitch for their nocturnal proclivities? Medical historians have pointed to some interesting parallels.

After all, the vampires of legend were pallid—as are many people with porphyria, since anemia often accompanies the condition.

In addition, the vampires’ nocturnal quest for the blood of innocents suggests a possible problem with their own blood supply—which is also true in porphyria, which occurs when an enzyme deficiency leads to a buildup of toxins in the bloodstream. Indeed, for people with some types of porphyria, the accumulating toxins cause photosensitivity so acute that sunbathing results in scar-causing blisters—a good reason to stay inside until dark.

And then there’s the delicate matter of teeth dripping blood. Thanks to deposits of abnormal red porphyrins in their teeth, people with a form of porphyria called congenital erythropoietic porphyria develop erythrodontia—literally, “red teeth.” It’s not hard to see how porphyria, in a time of ignorance and superstition, might have given rise to the vampire myth.

In reality, the vampire-porphyria connection breaks down in several ways. There’s absolutely no evidence that people with porphyria crave blood, historically, most of them have been in the dark, so to speak, when it comes to linking their condition with their hematologic health. That “red teeth” type of porphyria is extremely rare, with only a few hundred cases ever having been diagnosed. And certainly, nothing in the porphyria literature explains the fangs.

– The Editors

Fifteen-year-old Danielle stands five feet four inches tall and weighs more than 300 pounds. She also suffers from asthma. Fortunately, Danielle is participating in B’N Fit, one of many Einstein outreach programs that are helping her and other children who are this country’s future.

Danielle and the other kids in this article live in the Bronx, the poorest urban county in America. It also has the highest percentage of children under the age of 18 of any county in New York State. Like any American urban area, the Bronx has neighborhoods with tidy homes, strong families and involved citizens who have pride of place. But in other Bronx neighborhoods, kids are living in substandard housing where the air is dirty, and crime and drug abuse are a daily reality—plus they’re confronted by all the other problems associated with poverty, including poor schools, limited access to health care and inferior diets. For these children, growing up healthy is far from a sure thing.

In many different ways, the researchers, clinicians and students at Einstein are trying to improve the health of these city kids. They’re helping the children themselves and the adults they’ll become. Obese teens such as Danielle, for example, have an 80 percent chance of becoming obese adults, prone to all the health problems that accompany obesity, including a greatly elevated risk for type 2 diabetes, hypertension, heart attack, arthritis, end-stage kidney disease, breast cancer, colorectal cancer and other types of cancer.

Shedding Pounds and Getting Healthy

A recent study of Bronx adolescents found that obesity affects one in five girls and one in four boys—significantly more than the national average. Two Einstein pediatricians became so concerned about the problem that they developed programs to address it.

“I was seeing kids who were gaining more and more weight,” says Jessica Rieder, M.D., assistant clinical professor in the department of pediatrics at Einstein. “I’d ask them, ‘Why don’t you go outside and exercise?’ and they’d say, ‘I can’t go outside.’ I’d ask, ‘Who do you hang out with?’ and they’d answer that they had no friends. They couldn’t trust anybody.”
A B’N Fit group gets moving on the basketball court at the Mosholu-Montefiore Community Center.

So six years ago Dr. Rieder created B’N Fit, an after-school program for overweight Bronx children 12 and older that is now held at the Mosholu-Montefiore Community Center. The four-day-a-week program provides supervised physical activities for the kids and—with the aid of a social worker and a nutritionist—education and counseling aimed at helping them change their habits. There are also monthly family nights, a summer camp (last year’s 40 camps lost an average of three to four pounds per week) and, in some instances, home visits. The average B’N Fit kid weighs 240 pounds and has a body mass index three to four pounds per week) and, in a recent school-day afternoon. “Without B’N Fit, I’d probably be home after school eating.” Dr. Rieder spends half her time on B’N Fit and considers those hours her most rewarding.

“Childhood obesity is not just the family’s responsibility,” she notes. “Nor is it the responsibility of the doctor, the nutritionist, the school or the hospital. The problem really belongs to all of us.”

Overcoming Asthma

Danielle also exemplifies another notable Bronx health problem: childhood asthma. The asthma rate among Bronx kids is a whopping four times the national average.

“Asthma is one of the most common—and serious—problems that Bronx residents face,” says Hal Strelnick, M.D., professor of family and social medicine at Einstein and director of the Bronx Center to Reduce and Eliminate Ethnic and Racial Health Disparities, also known as Bronx CREED. He notes that each year almost 9,000 Bronx residents—half of them children—are hospitalized for asthma.

Dr. Strelnick blames the polluted air in certain parts of the borough, pointing to the truck-laden Cross Bronx Expressway and diesel exhaust from trucks driving to and dining at the Hunts Point Terminal Market. He also cites the mold and vermin associated with inadequate housing and notes that nearly 20 percent of Bronx adults smoke cigarettes, exposing thousands of kids to secondhand smoke that can cause or worsen asthma.

Several Einstein medical students have responded to the problem of asthma in the Bronx by launching an innovative program to help kids with asthma and those at risk of developing it.

Opening Airways

The Einstein Community Health Outreach Free Clinic (ECHO) serves only adults. But two years ago, second-year medical student Thalia Segal, a community outreach coordinator on the ECHO board, helped launch Open Airways—a national asthma education program endorsed by the American Lung Association—in a local elementary school. She knew that the program needed volunteers to bring its message to Bronx children.

“Childhood obesity is not just the family’s responsibility,” she notes. “Nor is it the responsibility of the doctor, the nutritionist, the school or the hospital. The problem really belongs to all of us.”

“The kids were so sad it was over,” recalls Thalia. “They felt it was this special club they were part of.” She has passed the Open Airways baton to a current second-year medical student who is continuing the program for the 2009–10 school year.

The Open Airways course concluded in this article are partnerships between Einstein professors and staffers at Montefiore Medical Center, the University Hospital and Academic Medical Center for Einstein. These programs illustrate the success of the affiliation agreement that Allen M. Spiegel, M.D., Einstein’s Marilyn and Stanley M. Katz Dean, and Steven M. Safyer, M.D., ’82, president and chief executive officer of Montefiore, signed in July 2009.

Overcoming Asthma

Danielle also exemplifies another notable Bronx health problem: childhood asthma. The asthma rate among Bronx kids is a whopping four times the national average. Childhood asthma. The asthma rate among Bronx kids is a whopping four times the national average.

“Asthma is one of the most common—and serious—problems that Bronx residents face,” says Hal Strelnick, M.D., professor of family and social medicine at Einstein and director of the Bronx Center to Reduce and Eliminate Ethnic and Racial Health Disparities, also known as Bronx CREED. He notes that each year almost 9,000 Bronx residents—half of them children—are hospitalized for asthma.

Dr. Strelnick blames the polluted air in certain parts of the borough, pointing to the truck-laden Cross Bronx Expressway and diesel exhaust from trucks driving to and dining at the Hunts Point Terminal Market. He also cites the mold and vermin associated with inadequate housing and notes that nearly 20 percent of Bronx adults smoke cigarettes, exposing thousands of kids to secondhand smoke that can cause or worsen asthma.

Several Einstein medical students have responded to the problem of asthma in the Bronx by launching an innovative program to help kids with asthma and those at risk of developing it.

Overcoming Asthma

Danielle also exemplifies another notable Bronx health problem: childhood asthma. The asthma rate among Bronx kids is a whopping four times the national average.

“Asthma is one of the most common—and serious—problems that Bronx residents face,” says Hal Strelnick, M.D., professor of family and social medicine at Einstein and director of the Bronx Center to Reduce and Eliminate Ethnic and Racial Health Disparities, also known as Bronx CREED. He notes that each year almost 9,000 Bronx residents—half of them children—are hospitalized for asthma.

Dr. Strelnick blames the polluted air in certain parts of the borough, pointing to the truck-laden Cross Bronx Expressway and diesel exhaust from trucks driving to and dining at the Hunts Point Terminal Market. He also cites the mold and vermin associated with inadequate housing and notes that nearly 20 percent of Bronx adults smoke cigarettes, exposing thousands of kids to secondhand smoke that can cause or worsen asthma.

Several Einstein medical students have responded to the problem of asthma in the Bronx by launching an innovative program to help kids with asthma and those at risk of developing it.

Overcoming Asthma

Danielle also exemplifies another notable Bronx health problem: childhood asthma. The asthma rate among Bronx kids is a whopping four times the national average. Childhood asthma. The asthma rate among Bronx kids is a whopping four times the national average.

“Asthma is one of the most common—and serious—problems that Bronx residents face,” says Hal Strelnick, M.D., professor of family and social medicine at Einstein and director of the Bronx Center to Reduce and Eliminate Ethnic and Racial Health Disparities, also known as Bronx CREED. He notes that each year almost 9,000 Bronx residents—half of them children—are hospitalized for asthma.

Dr. Strelnick blames the polluted air in certain parts of the borough, pointing to the truck-laden Cross Bronx Expressway and diesel exhaust from trucks driving to and dining at the Hunts Point Terminal Market. He also cites the mold and vermin associated with inadequate housing and notes that nearly 20 percent of Bronx adults smoke cigarettes, exposing thousands of kids to secondhand smoke that can cause or worsen asthma.

Several Einstein medical students have responded to the problem of asthma in the Bronx by launching an innovative program to help kids with asthma and those at risk of developing it.

Overcoming Asthma

Danielle also exemplifies another notable Bronx health problem: childhood asthma. The asthma rate among Bronx kids is a whopping four times the national average. Childhood asthma. The asthma rate among Bronx kids is a whopping four times the national average.

“Asthma is one of the most common—and serious—problems that Bronx residents face,” says Hal Strelnick, M.D., professor of family and social medicine at Einstein and director of the Bronx Center to Reduce and Eliminate Ethnic and Racial Health Disparities, also known as Bronx CREED. He notes that each year almost 9,000 Bronx residents—half of them children—are hospitalized for asthma.

Dr. Strelnick blames the polluted air in certain parts of the borough, pointing to the truck-laden Cross Bronx Expressway and diesel exhaust from trucks driving to and dining at the Hunts Point Terminal Market. He also cites the mold and vermin associated with inadequate housing and notes that nearly 20 percent of Bronx adults smoke cigarettes, exposing thousands of kids to secondhand smoke that can cause or worsen asthma.

Several Einstein medical students have responded to the problem of asthma in the Bronx by launching an innovative program to help kids with asthma and those at risk of developing it.
Better Health through Better Diets
Bronx CREED, the Einstein program directed by Dr. Strelnick, has launched numerous initiatives to improve the health of Bronx residents and of its children in particular. Three of these initiatives focus on improving children’s nutrition, starting from birth.

“Whether people act in healthy or unhealthy ways is greatly influenced by their environment—their social networks, the apartments they live in, their access to certain facilities and resources,” notes Dr. Chambers. “People in poor communities tend to have less access to recreational facilities where they can exercise or markets offering them healthy and fresh food. We hope that exposing people to healthier foods may lead to better food choices.”

Fruits and vegetables are the focus of a third Bronx CREED initiative. It is studying a sample of the borough’s 150 community gardens—roughly half of them endangered—and how they enhance their neighborhoods and add vital nutrients to the diets of local residents.

In particular, gardens affiliated with local schools offer young “growers” a welcome respite from asphalt and concrete—and, it is hoped, an appetite for their crops. “Ideally, these communities are providing kids with a hands-on introduction to the bounty, taste and texture of fresh vegetables,” says Yasmin Mossavar-Rahmani, Ph.D., R.D., an assistant professor of epidemiology & population health at Einstein, who is studying how urban gardens are influencing Bronx residents.

Help for At-Risk Kids
Many Bronx children are born to parents who don’t have the parenting skills or financial wherewithal to assure their children’s healthy futures. For these at-risk children, intervening early in their lives can make a world of difference. “If you can shore up the parent-infant relationship and improve the quality of caregiving, you can foster a young child’s cognitive, emotional and social development,” says Susan Chininitz, Psy.D., associate professor of clinical pediatrics at Einstein, in explaining the reasoning behind Healthy Steps, an initiative for first-time mothers and their infants.

It’s a collaboration between Einstein’s Children’s Evaluation and Rehabilitation Center, where Dr. Chinitz directs the Early Childhood Center, and the Comprehensive Family Care Center of Montefiore Medical Group.

Healthy Steps can begin even before the child is born—about a third of families are enrolled in the mother’s third trimester of pregnancy—or with the child’s first well-baby visit, and it continues through age 3. So far, the program has benefited more than 300 new mothers, one in five of them teenagers and many from deprived backgrounds themselves. For example, 30 percent of the mothers were raised in foster care, 11 percent were physically or sexually abused and 36 percent were raising their children alone.

Healthy Steps uses a team approach to give parents the support that helps them become better parents. The program offers a wide array of services, including enhanced well-child care (which focuses on both parental well-being and the child’s behavior and development), parent support groups and referrals to specialists for children and their parents. The team, which includes three psychologists, a social worker and a psychiatrist, also staffs a “warm” line weekdays during business hours, makes house calls on request and runs an extremely popular weekly parent-child play group.

“What’s really exciting,” says Healthy Steps Director Rahil Briggs, Psy.D., an assistant professor of pediatrics at Einstein, “is to look at the data on how the Healthy Steps children are doing at 6, 12, 18, 24 months out. We see that they’re doing much better in social and emotional development than are the control-group children, even though the Healthy Steps infants started out with more risk factors against them.”

Einstein and Montefiore programs are clearly making a difference in the lives of urban children. Ideally, like the children they serve, these innovative programs will grow and thrive.
It takes only a few minutes at Mulago Hospital to see why outside help is so vital. Patients must provide their own food and bedding. Family members serve as nurses and cooks, sleeping on the floor beside their loved ones and doing laundry outside on the hospital grounds. It’s sobering to think that this is the best public hospital in the country. “The government controls costs by discharging patients as soon as they smile,” says one Mulago physician, only half-joking. The overall mortality rate is about 70 percent.

Over at the Endocrinology Unit, the situation is much the same. The staff appears highly dedicated, but with limited resources, there’s only so much they can do. In Uganda, people with diabetes are typically diagnosed late, often after falling into a coma and being admitted for emergency care. Those who make it home must somehow survive on a diet rich in carbohydrates and poor in protein, and with intermittent access—at best—to glucose monitoring and medications.

Unfortunately, this scenario is not limited to Uganda. “Cases of diabetes worldwide are expected to exceed 370 million by 2030, and 90 percent of those will occur in developing countries,” says GDI director Meredith Hawkins, M.D., professor of medicine at Einstein, who is making her fifth trip to Uganda.

Still, Dr. Hawkins remains positive. “It would be very easy to feel overwhelmed,” she says. “But any time I wonder whether this work makes sense, I look at the phenomenal success in combating diabetes at Christian Medical College in Vellore [GDI’s partner in India]. CMC was started by an American woman 100 years ago. She set an example for reaching across an enormous cultural divide and doing something sustainable. From the very beginning, she focused on education and training.”

The hope is that the minister and others in the government can help spread the word about diabetes. “To improve outcomes, diabetes must become a national priority,” remarks Dr. Hawkins.

Office of the Minister of State for Relief, Disaster Preparedness and Refugees

In global health, as in many other aspects of life, it’s who you know. Thanks to Dr. Hawkins’ friends Don and Marty McLaughlin, a couple involved in humanitarian work in Uganda for several years, the GDI team secures a meeting with Francis Musa Ecweru, a charismatic and powerful government minister and a man who knows how to get things done. Years earlier, as an auxiliary army commander, he led a force that freed thousands of women and children held captive by Lord’s Resistance Army rebels in eastern Uganda.

Francis Musa Ecweru, Ugandan minister of state for relief, disaster preparedness and refugees.
So many people in global health have told us that you cannot accomplish anything in Uganda. That’s one reason I want to help.

Diabetes. Ponsiano died three months later, probably from too much insulin. “This is a very familiar story in Uganda,” says Dr. Hawkins. “We’re now doing research in India to determine whether it might be better to manage malnutrition diabetes with diet and drugs, hopefully sparing many people from fatal insulin doses,” she says.

Today’s visit to Nakayessa carries a more encouraging message: Even in a country plagued by poverty, drought, corruption and political instability, things can still be accomplished. With modest resources and relatively little experience in development efforts, the McLaughlins—Dr. Hawkins’ friends—have improved the lives of hundreds of children and their families by building a school, health clinic, library, cottage industry and model farm.

Downtown Kampala
Dr. Hawkins and GDI member Jason Baker, M.D.—a former fellow in diabetes, endocrinology and metabolism at Einstein, who is now an assistant professor of medicine at Weill Cornell Medical College—stroll into Casino Simha in downtown Kampala with a wad of greenbacks donated by an American pharmaceutical company. A tale of two good doctors gone bad? No, the casino reportedly is the best place in town for changing U.S. dollars into Ugandan shillings, which are needed to pay for tomorrow’s conference.

But the casino tells the Einstein duo that it won’t pay unless they play. “We were up a creek,” recounts Dr. Hawkins. “It was Saturday night, the other exchange places were closed, and the next morning we were leaving for the rural conference center. So, I pulled out my Einstein business card and told them what we were doing—and they changed our money at a very good rate.”

Mukono Agricultural Research and Development Center, Outskirts of Kampala
More than 80 doctors and nurses from diabetes clinics around the country gather for the three-day training conference, organized by Fred Nakwagala, M.D., and Agatha Namugyera, M.D., of Mulago Hospital, in conjunction with the GDI. Speakers include the GDI team as well as Silver Bahendeka, M.D., chief of the International Diabetes Federation, Africa region; Andrew Orim, M.D., chief of the Uganda Diabetes Association; and a half-dozen other Ugandan diabetes specialists.

Among the topics covered are the cardiovascular complications of diabetes, diabetic foot care and hypoglycemic emergencies.

On day two, the attendees break into small groups to discuss how to encourage healthy behavioral changes in patients. The doctors and nurses are slow to start but soon warm to the task. “Group learning is common in Western training but new to Uganda,” says Dr. Walker, who leads this part of the conference. “We need to learn more about how they learn best, about their communication skills and about their health beliefs and priorities.”

Another reminder comes from Dr. Namugyera. “It is in the blood of the African to go to witches,” meaning witch doctors, she notes during a discussion about patients’ beliefs and behaviors.

“North American medicine may not necessarily be the best solution in Uganda,” adds Dr. Hawkins. “The highly technological approaches we use here may not be affordable or culturally appropriate. We have to learn what will help—both from our Ugandan partners and from models that have proven successful in other developing nations.”

Continuing-education programs are rare events in Uganda, so the doctors and nurses make the most of the opportunity. Each participant receives a detailed, 50-page manual on diabetes care. Not one copy is left behind. In many regions of the country, doctors and nurses have little access to the Internet or medical literature, so such materials are treasured.

The second day of the conference stretches until midnight, and nobody seems to mind. If anything, the pace picks up late in the evening, as the closing session evolves into brainstorming: How can Uganda’s doctors and nurses...
change the public’s understanding of diabetes, influence public policy and attract funding for diabetes care!

The conference ends in a celebratory mood with a mini-graduation, as participants are called to the front of the room to receive handshakes and certificates.

“Countries such as Uganda suffer an enormous brain-drain of health professionals, and for good reason,” Dr. Hawkins tells me. “There is little support for them, and few resources. The ones who stay are heroes, and we need to treat them as such.”

Making a House Call
A dusty drive to the outskirts of Kampala brings us to the one-room home of Mrs. Mutagamba (not her real name), a woman in her fifties who has been struggling with type 2 diabetes for some 25 years. She knows how to control her illness, but the harsh reality of everyday life intervenes.

“When Mrs. Mutagamba has money for food, she feeds the grandchildren in their home of Mrs. Mutagamba (not her real name), a woman in her fifties who has been struggling with type 2 diabetes for some 25 years. She knows how to control her illness, but the harsh reality of everyday life intervenes.

Dr. Walker. “I’m going to investigate it further.”

With the support of a pilot grant from the Global Health Center, Dr. Walker plans to collaborate with Ugandan providers to set up and evaluate a self-management training program for use in diabetes clinics.

Kamwokya Christian Caring Community (KCCC)
After a fond farewell from Mrs. Mutagamba, the team heads to KCCC, the faith- and community-based non-governmental organization that had arranged the home visit with her.

The GDI team arrives and is invited to deliver impromptu lectures on diabetes for staff and patients. KCCC runs a series of clinics serving some 10,000 people in the slums of Kampala. And it’s a marvel—clean, organized and efficient. If Dr. Walker can develop a behavioral change program for Uganda, places like KCCC could conceivably put it into practice.

When Mrs. Mutagamba has money for food, she feeds the grandchildren in their home and eats what remains. Her small garden, a long walk away, yields a meager crop of sweet potatoes. She can’t afford glucose monitoring or regular trips to the clinic. It’s a wonder she has lived this long.

Mrs. Mutagamba exemplifies the difficulty of treating type 2 diabetes in a place like Uganda. That’s why the GDI has placed more emphasis on prevention—which is where Dr. Walker, a specialist in behavioral change, comes in. “Health-care providers in Uganda haven’t yet been trained to solve problems or set goals, or in techniques that empower patients by offering them choices in self-care,” says Dr. Walker.

“Some Ugandan colleagues even tell us that you have to scare patients to make them change behaviors. Often that results in just short-term change.”

Dr. Walker cites Western research showing that people are more likely to maintain a behavior that they choose themselves and feel confident performing. “Perhaps the doctor-patient relationship in Uganda is different, with neither party willing to relinquish the traditional doctor-patient roles,” says Dr. Walker. “I’m going to investigate it further.”

With the support of a pilot grant from the Global Health Center, Dr. Walker plans to collaborate with Ugandan providers to set up and evaluate a self-management training program for use in diabetes clinics.

Kamwokya Christian Caring Community (KCCC)
After a fond farewell from Mrs. Mutagamba, the team heads to KCCC, the faith- and community-based non-governmental organization that had arranged the home visit with her.

The GDI team arrives and is invited to deliver impromptu lectures on diabetes for staff and patients. KCCC runs a series of clinics serving some 10,000 people in the slums of Kampala. And it’s a marvel—clean, organized and efficient. If Dr. Walker can develop a behavioral change program for Uganda, places like KCCC could conceivably put it into practice.

Making a House Call
A dusty drive to the outskirts of Kampala brings us to the one-room home of Mrs. Mutagamba (not her real name), a woman in her fifties who has been struggling with type 2 diabetes for some 25 years. She knows how to control her illness, but the harsh reality of everyday life intervenes.

When Mrs. Mutagamba has money for food, she feeds the grandchildren in their home and eats what remains. Her small garden, a long walk away, yields a meager crop of sweet potatoes. She can’t afford glucose monitoring or regular trips to the clinic. It’s a wonder she has lived this long.

Mrs. Mutagamba exemplifies the difficulty of treating type 2 diabetes in a place like Uganda. That’s why the GDI has placed more emphasis on prevention—which is where Dr. Walker, a specialist in behavioral change, comes in. “Health-care providers in Uganda haven’t yet been trained to solve problems or set goals, or in techniques that empower patients by offering them choices in self-care,” says Dr. Walker.

“Some Ugandan colleagues even tell us that you have to scare patients to make them change behaviors. Often that results in just short-term change.”

Dr. Walker cites Western research showing that people are more likely to maintain a behavior that they choose themselves and feel confident performing. “Perhaps the doctor-patient relationship in Uganda is different, with neither party willing to relinquish the traditional doctor-patient roles,” says Dr. Walker. “I’m going to investigate it further.”

With the support of a pilot grant from the Global Health Center, Dr. Walker plans to collaborate with Ugandan providers to set up and evaluate a self-management training program for use in diabetes clinics.

Making a House Call
A dusty drive to the outskirts of Kampala brings us to the one-room home of Mrs. Mutagamba (not her real name), a woman in her fifties who has been struggling with type 2 diabetes for some 25 years. She knows how to control her illness, but the harsh reality of everyday life intervenes.

When Mrs. Mutagamba has money for food, she feeds the grandchildren in their home and eats what remains. Her small garden, a long walk away, yields a meager crop of sweet potatoes. She can’t afford glucose monitoring or regular trips to the clinic. It’s a wonder she has lived this long.

Mrs. Mutagamba exemplifies the difficulty of treating type 2 diabetes in a place like Uganda. That’s why the GDI has placed more emphasis on prevention—which is where Dr. Walker, a specialist in behavioral change, comes in. “Health-care providers in Uganda haven’t yet been trained to solve problems or set goals, or in techniques that empower patients by offering them choices in self-care,” says Dr. Walker.

“Some Ugandan colleagues even tell us that you have to scare patients to make them change behaviors. Often that results in just short-term change.”

Dr. Walker cites Western research showing that people are more likely to maintain a behavior that they choose themselves and feel confident performing. “Perhaps the doctor-patient relationship in Uganda is different, with neither party willing to relinquish the traditional doctor-patient roles,” says Dr. Walker. “I’m going to investigate it further.”

With the support of a pilot grant from the Global Health Center, Dr. Walker plans to collaborate with Ugandan providers to set up and evaluate a self-management training program for use in diabetes clinics.

Kamwokya Christian Caring Community (KCCC)
After a fond farewell from Mrs. Mutagamba, the team heads to KCCC, the faith- and community-based non-governmental organization that had arranged the home visit with her.

The GDI team arrives and is invited to deliver impromptu lectures on diabetes for staff and patients. KCCC runs a series of clinics serving some 10,000 people in the slums of Kampala. And it’s a marvel—clean, organized and efficient. If Dr. Walker can develop a behavioral change program for Uganda, places like KCCC could conceivably put it into practice.

Making a House Call
A dusty drive to the outskirts of Kampala brings us to the one-room home of Mrs. Mutagamba (not her real name), a woman in her fifties who has been struggling with type 2 diabetes for some 25 years. She knows how to control her illness, but the harsh reality of everyday life intervenes.

When Mrs. Mutagamba has money for food, she feeds the grandchildren in their home and eats what remains. Her small garden, a long walk away, yields a meager crop of sweet potatoes. She can’t afford glucose monitoring or regular trips to the clinic. It’s a wonder she has lived this long.

Mrs. Mutagamba exemplifies the difficulty of treating type 2 diabetes in a place like Uganda. That’s why the GDI has placed more emphasis on prevention—which is where Dr. Walker, a specialist in behavioral change, comes in. “Health-care providers in Uganda haven’t yet been trained to solve problems or set goals, or in techniques that empower patients by offering them choices in self-care,” says Dr. Walker.

“Some Ugandan colleagues even tell us that you have to scare patients to make them change behaviors. Often that results in just short-term change.”

Dr. Walker cites Western research showing that people are more likely to maintain a behavior that they choose themselves and feel confident performing. “Perhaps the doctor-patient relationship in Uganda is different, with neither party willing to relinquish the traditional doctor-patient roles,” says Dr. Walker. “I’m going to investigate it further.”

With the support of a pilot grant from the Global Health Center, Dr. Walker plans to collaborate with Ugandan providers to set up and evaluate a self-management training program for use in diabetes clinics.

Kamwokya Christian Caring Community (KCCC)
After a fond farewell from Mrs. Mutagamba, the team heads to KCCC, the faith- and community-based non-governmental organization that had arranged the home visit with her.

The GDI team arrives and is invited to deliver impromptu lectures on diabetes for staff and patients. KCCC runs a series of clinics serving some 10,000 people in the slums of Kampala. And it’s a marvel—clean, organized and efficient. If Dr. Walker can develop a behavioral change program for Uganda, places like KCCC could conceivably put it into practice.
Einstein scientists
at the forefront of the battle against Chagas disease, from left: Herbert Tanowitz, M.D.; Huan (Henry) Huang, M.D.; Louis Weiss, M.D., M.P.H.; David Spray, Ph.D.; and Linda Jelicks, Ph.D.

This scanning electron micrograph shows trypomastigotes, the stage of the Trypanosoma parasite that infects the bloodstream, growing in a culture of human red blood cells. Magnification: x1,000.

Chagas disease affects millions of people. But a century after it was identified, there is still no vaccine or effective treatment. Einstein researchers are working to bring this neglected parasitic disease under control.

During his epic five-year journey aboard the ship HMS Beagle, Charles Darwin collected thousands of species of all shapes and sizes, including one he would just as soon have left behind: a tiny parasite that invaded his bloodstream.

It happened during an 1834 excursion to the Andes, where, according to his journal, Darwin was bitten by “the great black bug of the Pampas” and soon fell ill. Fortunately—for him and for science—he recovered in time to set sail for the Galapagos, where his observations led to his theory of evolution.

But from then on, Darwin suffered an array of symptoms that made life, in his words, “an intolerable bother.” None of the more than 20 physicians he consulted could come up with a diagnosis, much less a cure.

In all likelihood, the bite of the bloodsucking Pampas bug (better known as the “kissing bug”) had infected Darwin with the single-celled parasite Trypanosoma cruzi, which causes Chagas disease (see sidebar, page 39). He died of heart failure in 1882, probably due to the infection he contracted 48 years earlier.

Today, 176 years after Darwin was infected, Chagas remains a serious health problem in large parts of Mexico and Central and South America, where it is a major cause of heart disease.

Little can be done to treat the acute form of Chagas or to prevent the heart damage that eventually develops in 10 percent to 30 percent of chronically infected people.

In this ancient battle between man and microbe (signs of Chagas have turned up in 9,000-year-old South American mummies), T. cruzi survives, as fit as ever. But that may soon change, thanks in no small part to scientists at Einstein, home to one of the largest and most productive Chagas disease research programs in the world.

Herbert Tanowitz, M.D., professor of pathology and of medicine at Einstein, has been studying T. cruzi since the early 1970s. He has made important discoveries regarding the immune response to infection, the interplay between the parasite and heart muscle cells, and the role of fat cells in the disease’s development. Last December, in recognition of his many contributions to the field, he was elected to the Brazilian Academy of Sciences. Dr. Tanowitz and his T. cruzi team are involved in a variety of projects, from mapping signaling pathways within T. cruzi cells to initiating a clinical trial of a stem cell therapy for Chagasic heart disease.

One hundred and one years ago, in a renowned triumph of medical sleuthing, Brazilian Carlos Chagas, M.D., figured out the life cycle of T. cruzi. Yet only now are researchers beginning to understand the parasite at the molecular level. A leader in this field is Huan (Henry) Huang, M.D., associate professor of pathology at Einstein, who is searching for proteins crucial to the parasite that could be targeted by drugs.

By Gary Goldenberg
focusing on protein kinase A (PKA), an enzyme found in the cells of many organisms. PKA regulates signaling pathways governing fundamental cellular processes such as energy metabolism and gene expression. Dr. Huang has shown that PKA’s enzymatic activity is essential for *T. cruzi*’s survival and that *T. cruzi* and human PKA have slightly different chemical structures—meaning that a drug might be able to target *T. cruzi* PKA while not harming infected people. The search for such a drug is ongoing in Dr. Huang’s lab.

Two Treatment Approaches

“You can treat an infectious disease by killing the organism, which is what Henry is working on,” explains Louis Weiss, M.D., M.P.H., professor of medicine and of pathology, and a member of Dr. Tanowitz inner circle. “Another approach, which we’re also pursuing, is to minimize the damage caused by the microbe. With *T. cruzi*, you have a chronic disease that is decades in the making, yet when people present with congestive heart failure, very few parasites can be found. The organism seems to trigger pathological processes that continue damaging the heart even after the parasite has left the scene.”

Thromboxane A2, a compound made by platelets that promotes blood clotting and constricts vessels, may play a role in that pathology. Back in 1990, Dr. Tanowitz observed that mice infected with *T. cruzi* have high blood levels of thromboxane A2. “But at the time,” says Dr. Tanowitz, “we had no idea what to make of this.” Now they do.

In a recent study involving a mouse model of Chagas disease, Dr. Tanowitz and his colleagues (including Anthony Ashton, Ph.D., a senior lecturer at the University of Sydney and a visiting professor of pathology at Einstein) found that the parasite makes its own thromboxane A2. “Not only that, but most of the thromboxane in infected mice comes from the parasite, not from the host,” says Dr. Tanowitz.

Following up on their discovery, the scientists were able to minimize the long-term cardiovascular effects of Chagas disease by administering the drug verapamil—a calcium channel blocker that inhibits the action of thromboxane A2. They are also studying the peptide endothelin-1, which, like thromboxane A2, constricts blood vessels. In a series of studies, the Tanowitz lab team has found that endothelin-1 contributes to the microvascular damage that occurs early in Chagas disease, and that blocking endothelin-1 ameliorates heart disease in *T. cruzi*-infected mice.

“The blood vessel constriction caused by these two compounds reduces blood flow, and we’re trying to learn how the reduced flow influences the progression of Chagas disease,” says Dr. Weiss. “A simple explanation would be that these compounds contribute to heart disease by damaging blood vessels, particularly in the heart’s microcirculation. But since thromboxane A2 is made by the parasite itself, it may also function as part of a feedback mechanism by which these organisms regulate their population and their development.”

Damage Control with Stem Cells

Stem cell therapy for Chagasic heart disease, recently evaluated in a clinical trial in Brazil, is yet another Einstein advance. Antonio Carlos Campos de Carvalho, M.D., Ph.D., came up with the idea while a postdoctoral fellow in the lab of David Spray, Ph.D., professor of neuroscience and of medicine at Einstein. Drs. Spray and de Carvalho (now the research director of the National Cardiology Institute of Brazil) jointly developed the therapy.

The clinical trial involved 300 Chagas patients with severe congestive heart failure. Stem cells were harvested from their bone marrow and injected into arteries feeding their hearts. (A month later, patients received injections of the drug iloprost to encourage the stem cells to proliferate.) Since bone marrow stem cells may be able to differentiate into heart muscle cells, the goal was for the stem cells to fuse with cardiac muscle and regenerate the endothelium and fat. Bugs acquire the parasite by imbibing blood from an infected person or other mammal, continuing the cycle of infection. Chagas disease symptoms vary over the course of the infection. In the early, acute phase, the disease is usually mild, with little more than swelling at the infection site. Most people don’t even suspect that they’ve become infected, and they may never know. Although infection is lifelong, *T. cruzi* can stay more or less dormant until years later. As many as 30 percent of infected people, a chronic form of the disease emerges—usually decades following infection—in the form of serious heart disease and gastrointestinal disorders.

Chagas disease occurs mainly in poor, rural areas of Mexico and Central and South America, where as many as 11 million people are infected. Another 100 million people who live in areas where Chagas is endemic are at risk for infection. With increasing immigration, Chagas is becoming more prevalent in the United States as well. The Centers for Disease Control and Prevention estimates that 30,000 people in the United States are infected. In 2007, the Red Cross began routinely screening donated blood for *T. cruzi*.

Currently, the main hope against Chagas lies not in therapy—none has yet proven effective—but in efforts to control the bugs that transmit Chagas parasites to people. Uruguay, for example, was declared transmission-free in 1997, followed by Chile in 1999 and Brazil in 2006. Wiping out all kissing bugs would certainly be helpful but would solve only part of the Chagas problem. Many of the millions of currently infected people will succumb slowly and painfully to Chagas-induced heart failure unless effective treatments are found.
New Views of Chagas

Einstein is also addressing Chagas disease from an imaging angle, courtesy of Tanowitz teammate Linda Jelicks, Ph.D., associate professor of physiology & biophysics. Dr. Jelicks conducted the first MRI study of mouse models of Chagas disease, in 1999. Dr. Jelicks’ laboratory recently showed that microPET imaging, a much scaled-down version of human positron emission tomographic imaging, can detect changes in cardiac glucose metabolism in T. cruzi–infected mice as early as 15 days postinfection—with better imaging techniques could spot changes in the structure or function of the heart. And in research combining three imaging methods—MRI, echocardiography and microPET—the Jelicks lab was able to assess changes in heart function, structure and metabolism throughout the course of T. cruzi infection.

“This means we can now follow the same animal over time to learn about the development of the disease or to study the effects of a treatment,” says Dr. Jelicks. Previously, this could be done only by taking tissue specimens from a series of animals, which is a laborious process with many limitations. “We’re hopeful that these same imaging techniques may be useful for evaluating the efficacy of experimental drugs in humans with Chagas and for tracking their early response to medications,” she says.

Slowly but methodically, researchers at Einstein are learning T. cruzi’s secrets and raising hopes for better treatments and a cure. “I’m optimistic that we will see some breakthroughs in the next few years,” says Dr. Tanowitz.

With the help of Einstein researchers, the disease that was such an “intolerable bother” to Darwin may one day become extinct.

Advancing Stem Cell Research

Einstein Overseer Roslyn Goldstein and Mark Mehler, M.D. ‘80

A professor of neuroscience and of psychiatry and behavioral sciences, and director of the Institute for Brain Disorders and Neural Regeneration. He earned his medical degree at Einstein with special distinction in neuroscience.

Since 1989, his Laboratory of Molecular and Developmental Neuroscience and Program in Neural Stem Cell Biology and Regenerative Medicine have carried out research in several areas, including how neural stem cells develop into nerve cells and whether diverse neurodegenerative diseases of the adult brain (Alzheimer’s, Parkinson’s, Lou Gehrig’s disease and others) actually begin very early in life—during embryogenesis—due to improperly programmed neural stem cells.

In a recent study involving an animal model of Huntington’s disease, Dr. Mehler and his team described several impairments in neural stem cells that occur during embryonic life. Other recent papers involve two proteins dubbed REST and CoREST. These master regulators of gene function: neurons develop into nerve cells and others) actually begin very early in life during embryogenesis due to improperly programmed neural stem cells.

neurodegenerative diseases at a very basic level: inside the neural stem cells that form the brain.

Stem cell research is a priority in Einstein’s Strategic Research Plan. In 2008, the College of Medicine established the Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, staffed by a renowned faculty. Einstein received one of the largest initial major grants from New York State’s Stem Cell Board and is home to one of the nation’s first NIH-supported Centers for Human Embryonic Stem Cell Research.

“We’re proud of Einstein’s outstanding programs in stem cell research,” says Allen M. Spiegel, M.D., the Marilyn and Stanley M. Katz Dean. “The efforts of investigators like Dr. Mehler and his colleagues are greatly enhanced by the generosity and vision of friends like Roz and Les Goldstein.”

Mark Mehler, M.D. ’80, center, discusses recent findings with colleagues Adrin Molerio, M.D., Ph.D., and Solen Golkar, M.D.
Academic Convocation 2009
RECOGNIZING FACULTY AND PHILANTHROPY

On October 12, 2009, 14 Einstein faculty members were honored at a special academic convocation, along with the donors who help make their work possible. Also recognized were 11 faculty members who recently were awarded tenure. The investitures, installations and awards represented a wide range of medical disciplines and scientific areas—from cardiovascular disease and liver disease to imaging and computational biology. Investments of time, talent and donor support in these key areas help Einstein achieve its goal of improving human health through research.

Allen M. Spiegel, M.D., the Marilyn and Stanley M. Katz Dean, and Dr. Morton Kossel, provost and senior vice president for academic affairs at Yeshiva University, presided over the event, held in the Mary and Karl Robbins Auditorium in the Leo Forchheimer Medical Science Building. Executive Dean Edward R. Burns, M.D., and Dr. Henry Kressel, chairman of the YU Board of Trustees, also participated.

Dean Spiegel presented the faculty members with their new appointments, and was joined by many of the donors who funded the positions. The high point of the convocation was the dean’s surprise announcement of a new cardiovascular research institute on campus, made possible by a gift from the Wilf family, represented by Einstein Overseer Zygmunt Wilf (see sidebar, left).

Other donors in attendance whose investments in professional chairs, faculty scholar positions and Einstein programs were recognized included Ruth L. Gottesman, Ed.D., Chairperson, Einstein Board of Overseers; Judith and Chairman Emeritus Burton P. Resnick; Overseers Marilyn and Stanley M. Katz; Overseers Evelyn Gross Lippman, M.D.; ‘71; Overseer Linda Altman and Earle Altman; S. Dillard Kirby, executive director of the F.M. Kirby Foundation; representing the Abraham and Mildred Goldstein Charitable Trust, Overseer Hirschell Levine, Kim Baptiste and David Goldstein (on behalf of Mr. Goldstein’s mother, Mildred Goldstein); and Overseer Kathy Weinberg and Bambi Felberbaum, the current and immediate past presidents, respectively, of the National Women’s Division.

Notable donors unable to attend included Overseers Diane Belfer, Betty Feinstein and Sylvia Olnick.

A tent set up in the courtyard behind the Forchheimer Building was the site of a postconvocation reception. Dean Spiegel then hosted a celebratory dinner for the honorees and their benefactors in the Lubin Dining Hall. Following introductory remarks from Glenn Miller, associate dean for institutional advancement, Dean Spiegel noted that Einstein supporters have contributed more than $100 million over the last two years—easily the best two-year span in the College of Medicine and Montefiore’s history—and commented that “if this was a state of the union address, I would be able to say that the state of the union is good.”

The newly honored Einstein faculty members are the following:

Richard N. Kitis, M.D., the Dr. Gerald and Myra Dorros Professor of Cardiovascular Disease and professor in the departments of medicine and of cell biology, was installed as the director of the Wilf Family Cardiovascular Research Institute. Dr. Kitis will also continue to study the mechanisms of cell death and the role they play in human disease.

Craig A. Branch, Ph.D., associate professor of radiology, was invested as director of Einstein’s Gruss Magnetic Resonance Research Center. Dr. Branch’s research focuses on developing MRI-based measures of brain function and applying them to brain disorders.

Roy S. Chuck, M.D., Ph.D., professor of ophthalmology and visual sciences and of genetics, was invested as chair of ophthalmology and visual sciences at the College of Medicine and Montefiore Medical Center. Dr. Chuck is a recognized innovator and expert in laser surgery, complex corneal transplantation including stem cell grafting, and dry eye disease. His corneal stem cell surgery has achieved a high success rate.

Einstein supporters have contributed more than $100 million over the last two years.

John S. Condeelis, Ph.D., professor and cochair of anatomy and structural biology and codirector of the Gruss Lipper Biophysics Center, was invested as the first holder of the new Judith and Burton P. Resnick Chair in Translational Research. Dr. Condeelis’ work has led to improved technologies for studying living cells and to important insights into metastatic breast cancer.

Ekaterina Dadachova, Ph.D., associate professor of nuclear medicine and of microbiology & immunology, was invested as the first Sylvia and Robert S. Olnick Faculty Scholar in Cancer Research. Through her studies using radiolabeled antibodies, Dr. Dadachova has demonstrated that this therapy offers potential for treating melanoma and other cancers as well as fungal, bacterial and viral infections.

John J. Foxe, Ph.D., professor of pediatrics, was installed as the first research director for Einstein’s Children’s Evaluation and Rehabilitation Center (CERC). This new direction for CERC was made possible by the National Women’s Division’s successful $3 million fundraising initiative.

Gary Lawrence Goldberg, M.B., Ch.B., professor and vice chair of obstetrics & gynecology and women’s health, was invested as the inaugural Linda and Earle Altman Faculty Scholar in Cancer Research. Dr. Goldberg has conducted clinical trials on several types of gynecological cancers.

John M. Greally, M.B., B.Ch., Ph.D., associate professor of genetics and of medicine and director of the Einstein Center for Epigenomics, was invested as the Faculty Scholar for Epigenomics,
a newly endowed academic position was created thanks to a bequest from the Jacob and Gertrude Reicher family. A pioneer in cell therapy, Dr. Gupta is developing strategies for turning human embryonic stem cells into fully functional liver cells that could be transplanted into the body.

Jeffrey W. Pollard, Ph.D., professor of developmental and molecular biology and of obstetrics & gynecology and women’s health, and director of Einstein’s Center for the Study of Reproductive Biology and Women’s Health, was invested as the Louis Goldstein Swan Chair in Women’s Cancer Research. Dr. Pollard’s work in breast cancer has helped illuminate the tumor microenvironment and its role in the spread of cancer. The endowed position was established by Mildred Goldstein in memory of her daughter.

Jeffrey E. Segall, Ph.D., professor of neuroscience and director of Einstein’s Neuropsychopharmacology Center, was invested as the inaugural holder of the F. M. Kirby Chair in Neural Repair and Protection. Dr. Zukin has shown that glutamate receptors on the surface of nerve cells are involved in neurological problems such as schizophrenia, Huntington’s disease and stroke.

Also recognized at the convocation were 11 faculty members who were awarded tenure since the last convocation, held in 2007: Aviv Bergman, Ph.D.; Eric Bouhassira, Ph.D., the Ingeborg and Ira Leon Rennert Professor of Stem Cell Biology and Regenerative Medicine; Streamson C. Chua, M.D., Ph.D.; Roy Chuck, M.D., Ph.D.; Mark J. Craja, M.D.; Winfried Edelmann, Ph.D.; Betsy Herold, M.D.; Kami Kim, M.D.; Steven Libutti, M.D.; Jeffrey E. Segall, Ph.D.; and Jan Vijg, Ph.D.
Photographing the Masterworks of Winter

A
n elusive friend with the ini-
tials J.F. meets privately each
winter with Charles E. Rogler,
Ph.D., in the greenhouse outside his
home in Mahopac, NY. Dr. Rogler, a
professor in the departments of medi-
cine and of microbiology & immunol-
ogy at Einstein, never knows exactly
when his cool customer will come, so
he watches and waits, camera at the
ready. When Jack Frost finally arrives—
leaving his ephemeral flourishes of frost
on the greenhouse glass—Dr. Rogler
captures them in spectacular detail.

Much of Dr. Rogler’s research in
Einstein’s department of medicine
focuses on microRNA within liver
cells. His seasonal forays into frost
photography provide a creative outlet
far from his multi-bench lab strewn
with pipettes.

“I believe that abstract art should
be beautiful,” he says. “It should lead
to someplace. And it should be very
pleasing to the eye and create images
in your mind.” Until recently, most
of Dr. Rogler’s frost photography has
been in black and white. But at the end
of 2007—inspired by how ice crystals
differentially refract various wavelengths
of light—he began experimenting with
polarizing filters, which introduced
dramatic slices of the electromagnetic
spectrum into his photographs. He plans
to develop the technique further.

“The black-and-white abstract art
is the purest, but the polarizing lenses
add a new dimension to it,” Dr. Rogler
says. “They’re all beautiful images. And
they’re novel—nobody else is taking
photographs in this way.”

Capturing frost on film requires spe-
cific combinations of temperature and
humidity, along with a lot of patience.
While Dr. Rogler can’t control the
temperature, he does sometimes resort
to washing down the glass with a garden
hose to catalyze the crystals.

Dr. Rogler has shown his award-
winning work in several galleries and
has sold numerous prints through his
Jack Frost Designs business. His “ice
to art” images have also appeared in
Ad Libitum, Einstein’s art and literary
magazine.
Most Einstein students train to become physicians, researchers or physician-scientists. But some choose nontraditional career paths. Einstein magazine spoke with three alumni who have leveraged their Einstein educations into fulfilling business careers.

CARL GOLDFISCHER, M.D.
Class of 1988
Investment Partner and Managing Director, Bay City Capital
San Francisco, CA

I've always had a strong interest in finance and worked at the investment bank Kidder Peabody after college. My father, Sidney Goldfischer, M.D., created Einstein's technology transfer office, which licenses scientific discoveries, so I was exposed to the business side of medical research early on. After my second year of residency, I decided to pursue my interest in finance rather than continue with clinical practice or research. At the time, there were few M.D.s at financial firms, and the biotechnology industry was far smaller than it is now.

My first job was with a small investment bank, followed by a position as chief financial officer of a public company that was developing a novel anticancer antibody. In 2000, I moved to California for my present job at Bay City Capital, where I'm one of two managing partners. We are not viewed as a traditional venture capital firm; rather, we invest in a range of life-science–focused activities, from starting new companies to restructuring distressed publicly traded entities. BCC has more than 20 professionals and a large network of advisors and contacts in academia and industry. We have more than $1 billion to invest, most from institutional investors.

Our job is to make money for our investors. But generating profits can be very challenging, especially in the current environment where it often takes more money to get started and then longer to get a return on that investment. It has also become increasingly difficult to exit from our companies, as far fewer public offerings are happening lately, and mergers and acquisitions have dried up. The bets we make on research and development have been too risky for most pharmaceutical companies, though as they restructure their internal research and development operations we are seeing them invest with us at earlier stages.

In one case, I started a company from scratch after hearing a lecture by Fred Gage, Ph.D., of the Salk Institute. It was a big risk, but quite gratifying: Brain Cells, Inc., now has 75 employees.

"I started a company from scratch after hearing a lecture by Fred Gage, Ph.D., of the Salk Institute. It was a big risk, but quite gratifying: Brain Cells, Inc., now has 75 employees."

Diane Cohen Madfes, M.D.
Class of 1992
Consultant, Garnier Skin Care Products
Entrepreneur, Burn Cream MD™
Private Practitioner in Dermatology
Clinical Professor, Attending,
Mount Sinai Medical Center
New York, NY

I have a solo practice in dermatology, with an office in Manhattan and a satellite facility in Connecticut. I didn't choose dermatology as my specialty until I was in my fourth year of medical school. But I'm glad I did: Besides having opportunities to do surgery, which I enjoy, you can have a real impact on how people look and on their self-esteem. I find that very rewarding.

Twelve years ago, a young woman came to me with the worst acne I'd ever seen. As her condition improved and got under control, her entire persona changed. She started dating, got married and now has four children. Now I take care of her and her extended family!

Clinical medicine is my first love, and Einstein gave me a solid foundation. I learned always to listen to my patients and find out their needs. My primary mentor was Dr. Michael Fisher, an incredible diagnostician and teacher who was chair of the dermatology division. He taught me that you can never know enough, and that you should never stop asking questions.

But about five years into my dermatology practice, I noticed that patients were asking me questions such as, "What creams should I use for burns, wrinkles or brown spots?" I realized there were other ways to use my expertise in addition to seeing patients, and I got involved with the cosmetics industry.

Since 2007, I've been a consultant for Garnier, an affiliate of L'Oréal. I've helped launch several product lines—Garnier Nutritioniste™ Skin Renew, Ultra-Lift® and Ultra-Lift Pro®—and am involved with two new product lines due out later this year. I work with the many people who have to sign off on any new product: laboratory and clinical researchers, marketing people, upper management and those running focus groups. I get to see how it all comes together. I love working for Garnier because of its extremely high standards for both quality and performance. Plus, my patients enjoy testing new products, and I get their immediate feedback.

Running my own medical practice has helped me make more business oriented, and so did the fact that my family has owned a landmark New York restaurant—Sammy's Famous Roumanian—for many years. I waited there to help put myself through medical school. My family jokes that I run my practice like a restaurant, always making sure the office is well stocked and that my staff anticipates patients' needs.

My background in the restaurant business gave me the idea for a new product. I'd noticed that kitchen workers often burned themselves and needed a non-prescription cream that could eliminate pain and speed healing. I spent two years formulating my Burn Cream MD™. Two well-known chefs, Mario Batali and Emeril Lagasse, agreed to test it. They were so excited about the product that they provided testimonials. It's now sold in 50 stores nationwide.

I'm also a clinical professor at Mount Sinai. My husband, Jason Madfes, is a graduate of YU's Cardozo School of Law, and we have two teenagers. My advice to Einstein students who may be struggling with how to do it all: Have children while you're still young. And realize that you can't do everything perfectly.
“You have to be able to function under pressure without becoming stressed. You can’t be afraid to get your hands dirty. My Einstein training taught me about these things.”

We typically invest several million dollars in a startup company to hire a management team, get patents on the technology and—if the company makes a device or a drug—take it into clinical trials. Once we launch the startup, a large company may want to buy it, or we may sell shares in a public offering. We’ve helped start and build more than 200 successful companies, including Amgen, Applied Biosystems, Adeza, Pacific Biosciences, Octel, Nuance Communications and Web MD.

Over the years, many people have asked me how to do what I’m doing. I tell them it’s much harder to break into venture capital now than when I started. It requires a lot of discipline and being a fanatic about details. Probably most important, you’re constantly taking risks, so you have to be able to function under pressure without becoming stressed. You can’t be afraid to get your hands dirty. And at the end of the day, it’s your relationships that set you apart. My Einstein training taught me about all these things.

If you’re an Einstein graduate following a nontraditional career path and would like to share your story with readers of Einstein magazine, we’d love to hear from you. Please e-mail Emily Snyder in our Alumni Relations office at emily.snyder@einstein.yu.edu.

DOUG KELLY, M.D.
Class of 1988
Founding Partner, Alloy Ventures
Palo Alto, CA

Growing up in a medical family, I would accompany my dad on his hospital rounds, and in college, I thought I ultimately wanted to run an academic trauma center. But as time went on, I realized I was more interested in developing technology and being a fanatic about details. Probably most important, you’re constantly taking risks, so you have to be able to function under pressure without becoming stressed. You can’t be afraid to get your hands dirty. And at the end of the day, it’s your relationships that set you apart. My Einstein training taught me about all these things.

We typically invest several million dollars in a startup company to hire a management team, get patents on the technology and—if the company makes a device or a drug—take it into clinical trials. Once we launch the startup, a large company may want to buy it, or we may sell shares in a public offering. We’ve helped start and build more than 200 successful companies, including Amgen, Applied Biosystems, Adeza, Pacific Biosciences, Octel, Nuance Communications and Web MD.

Over the years, many people have asked me how to do what I’m doing. I tell them it’s much harder to break into venture capital now than when I started. It requires a lot of discipline and being a fanatic about details. Probably most important, you’re constantly taking risks, so you have to be able to function under pressure without becoming stressed. You can’t be afraid to get your hands dirty. And at the end of the day, it’s your relationships that set you apart. My Einstein training taught me about all these things.

If you’re an Einstein graduate following a nontraditional career path and would like to share your story with readers of Einstein magazine, we’d love to hear from you. Please e-mail Emily Snyder in our Alumni Relations office at emily.snyder@einstein.yu.edu.

DOUG KELLY, M.D.
Class of 1988
Founding Partner, Alloy Ventures
Palo Alto, CA

Growing up in a medical family, I would accompany my dad on his hospital rounds, and in college, I thought I ultimately wanted to run an academic trauma center. But as time went on, I realized I was more interested in developing technology and being a fanatic about details. Probably most important, you’re constantly taking risks, so you have to be able to function under pressure without becoming stressed. You can’t be afraid to get your hands dirty. And at the end of the day, it’s your relationships that set you apart. My Einstein training taught me about all these things.

We typically invest several million dollars in a startup company to hire a management team, get patents on the technology and—if the company makes a device or a drug—take it into clinical trials. Once we launch the startup, a large company may want to buy it, or we may sell shares in a public offering. We’ve helped start and build more than 200 successful companies, including Amgen, Applied Biosystems, Adeza, Pacific Biosciences, Octel, Nuance Communications and Web MD.

Over the years, many people have asked me how to do what I’m doing. I tell them it’s much harder to break into venture capital now than when I started. It requires a lot of discipline and being a fanatic about details. Probably most important, you’re constantly taking risks, so you have to be able to function under pressure without becoming stressed. You can’t be afraid to get your hands dirty. And at the end of the day, it’s your relationships that set you apart. My Einstein training taught me about all these things.

If you’re an Einstein graduate following a nontraditional career path and would like to share your story with readers of Einstein magazine, we’d love to hear from you. Please e-mail Emily Snyder in our Alumni Relations office at emily.snyder@einstein.yu.edu.

DOUG KELLY, M.D.
Class of 1988
Founding Partner, Alloy Ventures
Palo Alto, CA

Growing up in a medical family, I would accompany my dad on his hospital rounds, and in college, I thought I ultimately wanted to run an academic trauma center. But as time went on, I realized I was more interested in developing technology and being a fanatic about details. Probably most important, you’re constantly taking risks, so you have to be able to function under pressure without becoming stressed. You can’t be afraid to get your hands dirty. And at the end of the day, it’s your relationships that set you apart. My Einstein training taught me about all these things.

We typically invest several million dollars in a startup company to hire a management team, get patents on the technology and—if the company makes a device or a drug—take it into clinical trials. Once we launch the startup, a large company may want to buy it, or we may sell shares in a public offering. We’ve helped start and build more than 200 successful companies, including Amgen, Applied Biosystems, Adeza, Pacific Biosciences, Octel, Nuance Communications and Web MD.

Over the years, many people have asked me how to do what I’m doing. I tell them it’s much harder to break into venture capital now than when I started. It requires a lot of discipline and being a fanatic about details. Probably most important, you’re constantly taking risks, so you have to be able to function under pressure without becoming stressed. You can’t be afraid to get your hands dirty. And at the end of the day, it’s your relationships that set you apart. My Einstein training taught me about all these things.

If you’re an Einstein graduate following a nontraditional career path and would like to share your story with readers of Einstein magazine, we’d love to hear from you. Please e-mail Emily Snyder in our Alumni Relations office at emily.snyder@einstein.yu.edu.

DOUG KELLY, M.D.
Class of 1988
Founding Partner, Alloy Ventures
Palo Alto, CA

Growing up in a medical family, I would accompany my dad on his hospital rounds, and in college, I thought I ultimately wanted to run an academic trauma center. But as time went on, I realized I was more interested in developing technology and being a fanatic about details. Probably most important, you’re constantly taking risks, so you have to be able to function under pressure without becoming stressed. You can’t be afraid to get your hands dirty. And at the end of the day, it’s your relationships that set you apart. My Einstein training taught me about all these things.

We typically invest several million dollars in a startup company to hire a management team, get patents on the technology and—if the company makes a device or a drug—take it into clinical trials. Once we launch the startup, a large company may want to buy it, or we may sell shares in a public offering. We’ve helped start and build more than 200 successful companies, including Amgen, Applied Biosystems, Adeza, Pacific Biosciences, Octel, Nuance Communications and Web MD.

Over the years, many people have asked me how to do what I’m doing. I tell them it’s much harder to break into venture capital now than when I started. It requires a lot of discipline and being a fanatic about details. Probably most important, you’re constantly taking risks, so you have to be able to function under pressure without becoming stressed. You can’t be afraid to get your hands dirty. And at the end of the day, it’s your relationships that set you apart. My Einstein training taught me about all these things.

If you’re an Einstein graduate following a nontraditional career path and would like to share your story with readers of Einstein magazine, we’d love to hear from you. Please e-mail Emily Snyder in our Alumni Relations office at emily.snyder@einstein.yu.edu.

DOUG KELLY, M.D.
Class of 1988
Founding Partner, Alloy Ventures
Palo Alto, CA

Growing up in a medical family, I would accompany my dad on his hospital rounds, and in college, I thought I ultimately wanted to run an academic trauma center. But as time went on, I realized I was more interested in developing technology and being a fanatic about details. Probably most important, you’re constantly taking risks, so you have to be able to function under pressure without becoming stressed. You can’t be afraid to get your hands dirty. And at the end of the day, it’s your relationships that set you apart. My Einstein training taught me about all these things.

We typically invest several million dollars in a startup company to hire a management team, get patents on the technology and—if the company makes a device or a drug—take it into clinical trials. Once we launch the startup, a large company may want to buy it, or we may sell shares in a public offering. We’ve helped start and build more than 200 successful companies, including Amgen, Applied Biosystems, Adeza, Pacific Biosciences, Octel, Nuance Communications and Web MD.

Over the years, many people have asked me how to do what I’m doing. I tell them it’s much harder to break into venture capital now than when I started. It requires a lot of discipline and being a fanatic about details. Probably most important, you’re constantly taking risks, so you have to be able to function under pressure without becoming stressed. You can’t be afraid to get your hands dirty. And at the end of the day, it’s your relationships that set you apart. My Einstein training taught me about all these things.

If you’re an Einstein graduate following a nontraditional career path and would like to share your story with readers of Einstein magazine, we’d love to hear from you. Please e-mail Emily Snyder in our Alumni Relations office at emily.snyder@einstein.yu.edu.
Nine Classes to Celebrate Einstein Reunion

All Einstein classes ending in 5s and 0s will return to campus June 2–4, 2010, to reconnect, reminisce and hear the latest Einstein news.

This year’s reunion celebrations will include the milestone 50th Anniversary Reunion of the Class of 1960—Einstein’s second graduating class. The Einstein community will pay special tribute to the Class of 1960 and honor its members for the important role they play in Einstein’s history.

“I’ve been involved with all of my Einstein class’s reunions and am honored to be chairing our milestone 50th Reunion of the Class of 1960 Reunion,” says Ronald Ross, M.D. ’60, chair of the Class of 1960 Reunion Committee. “The committee has been planning for several months, and there is a sense of excitement and anticipation. We look forward to returning to campus and seeing each other this spring.”

Reunion activities will begin on Wednesday, June 2, 2010, with the Class of 1960 Welcome Dinner at the Yeshiva University Museum at the Center for Jewish History, New York. Members of the Class of 1960 will gather—some seeing each other for the first time since their 45th anniversary reunion in 2005, and some for the first time in decades—to celebrate their many personal and professional accomplishments since graduating from Einstein.

All alumni are invited to march in Einstein’s Commencement Exercises, June 3, 2010, at 9:30 a.m. in Avery Fisher Hall at Lincoln Center, where the Class of 1960 will be honored along with the recipients of the 2010 Einstein Alumni Awards.

Following Commencement, all reunion classes are invited to the Gala Reunion Dinner at the Grand Hyatt Hotel, where alumni will be joined by Allen M. Spiegel, M.D., the Marilyn and Stanley M. Katz Dean, and other Einstein deans and faculty.

On Friday, June 4, the Einstein campus will welcome alumni for Alumni Day on Campus, which will feature a panel discussion led by members of the Class of 1960, some of whom spent their careers at Einstein as faculty. Alumni will tour campus and visit the new Rush L. Gottesman Clinical Skills Center.

Harricette Mogul, M.D. ’65, M.P.H., a member of the class of 1965 reunion committee and past president of the Einstein Alumni Association, remarked, “As a member of the Einstein Alumni Board of Governors, I am fortunate to return to campus periodically to see its growth and meet new faculty. But nothing compares to the excitement of being back on campus with my Einstein classmates.”

“Reunions are always a special time to see classmates and honor the College of Medicine that helped launch our careers. We are all happy to celebrate our 50th Anniversary Reunion with our classmates, and I encourage all reunion-year alumni to return to Einstein this spring,” says Dr. Ross.

For more information about Einstein’s 2010 Reunion celebration and how you can get involved, please contact Emily Snyder, acting director of alumni relations, at 718.430.2922 or emily.snyder@einstein.yu.edu.
Arnold Bresky, M.D. ’65, a preventive gerontologist in behavioral neurology, was honored in May 2009 by the Los Angeles City Council for his work with Alzheimer patients and caregivers. An exhibit of drawings by Dr. Bresky’s Alzheimer patients, who had never drawn before—entitled “Hope, Esperanza and Mirzah”—was displayed at the Los Angeles City Hall in honor of “Brain Health Month.” Dr. Bresky’s third book, Brain Tune Up: Guide to Caring for Yourself, was recently published.

Lucy Shapiro, Ph.D. ’66, director of the Beckman Center for Molecular and Genetic Medicine at Stanford Medical School and a member of the U.S. National Academy of Sciences, has received several prestigious awards. She was the recipient of the Waksman Award in Microbiology from the National Academy of Sciences and was a 2009 recipient of the German International Gairdner Award, given to individuals from diverse fields for outstanding discoveries or contributions to medical science. She was selected for her discovery of mechanisms that define cell polarity and asymmetric cell division, key processes in cell differentiation and in the generation of cell diversity. Dr. Shapiro also received the City of Philadelphia’s 2009 John Scott Award, shared with her husband, physicist Prof. Harley McAdams, Ph.D., in recognition of “their application of electrical circuit analysis to genetic networks, which enlightened our understanding of living cells.” In January, she received the Albert Lasker Award for Basic Medical Research. Dr. Shapiro is a board certified general internist who has three decades of work on Caulobacter crescentus have provided “the most thorough understanding of the cell cycle in bacteria.”

1970s
Joseph Citron, M.D. ’71, has a private practice in Atlanta, GA. He practices ophthalmology part-time and, since passing the Georgia bar in 1997, has been traveling across the country to consult with civil and criminal attorneys on medical cases. His recent article about hospital lab tests lacking forensic reliability was published in the Winter 2009 edition of the Journal of Legal Nurse Consultants. Dr. Citron celebrated the bris of his sixth grandson on January 7, 2010.

Norman Luban, M.D. ’71, is a part-time, office-only neurologist in Cherry Chase, MD. He spends the remainder of the week at the Veterans Administration Hospital in Washington, DC, evaluating veterans or active-duty military personnel, many of whom have sustained neurologic injuries in the wars in Afghanistan and Iraq. His son, Benjamin, recently married Kim Kulik at the Skirball Center in Los Angeles.

Lynn H. Galen, M.D. ’79, recently joined Women’s Health Associates in Melrose, MA. Her son, Abraham Kirby-Galen, age 16, is a sophomore at Gann Academy in Waltham, MA.

1980s
Alan H. Kadish, M.D. ’80, has been appointed president and chief executive officer of Touro College. Dr. Kadish had previously served as Touro’s senior provost and chief operating officer since September 2009. Board certified in internal medicine, cardiovascular disease and cardiac electrophysiology, Dr. Kadish joined Touro after serving for 19 years as a faculty member and administrator at Northwestern University.

Dr. Richard K. Bernstein, M.D. ’83, was the keynote speaker at the meeting of the Metabolism Society in New York City in February; his telescopic photo of a total eclipse of the sun appeared on the cover of the Archives of Internal Medicine in March. Dr. Bernstein is director emeritus of Einstein’s Peripheral Vascular Disease Clinic at Jacobi Hospital, where he currently serves as a volunteer. He treats patients with diabetes and obesity in Mamaroneck, NY, and has published six books. Dr. Bernstein entered Einstein at age 45, after a career as an engineer and...
Mitchell J. Schwaber, M.D. '91

His secret: a very low carbohydrate diet. And for Dr. Schwaber, “better than most 20-year-olds without diabetes.” His recent coronary artery calcium score was “lower than most 20-year-olds without diabetes.” His secret: a very low carbohydrate diet.

Jay Feingold, M.D., Ph.D. '86, has been appointed vice president of medical affairs of Daiichi Sankyo, Inc. He will manage strategic direction of the company's medical affairs department and oversee more than 90 scientists, researchers and field-based medical teams responsible for collaborating with the company's clinical research arm, commercial organization and partners. He will also serve on DSI's executive committee, which is responsible for guiding the organization's short- and long-term strategic and financial objectives. Headquartered in Parsippany, NJ, Daiichi Sankyo, Inc. is the U.S. subsidiary of the Daiichi Sankyo Co., Ltd., the Tokyo-based global pharmaceutical firm. Dr. Feingold, a molecular biologist, is a member of the American Society of Hematology and the American Society of Clinical Oncology. Prior to joining DSI, he was with Wyeth Pharmaceuticals, where he most recently led oncology global clinical development.

Corporate officer. Now 76, he has lived with type 1 diabetes most of his life. His recent coronary artery calcium score was “lower than most 20-year-olds without diabetes.” His secret: a very low carbohydrate diet.

In Memoriam

Dr. Edelmann is a professor of medicine at Albert Einstein College of Medicine and of Yeshiva University.

John Allen M. Spiegel hosted Janet and Martin Spatz on the Einstein campus on October 6, 2009. The occasion was the dedication of the Spatz Family Laboratory for Cancer Research. The laboratory was named in memory of Helen and Irving Spatz and Helen and Joseph Alintoff, the couple’s late parents. Helen and Irving Spatz were Benefactors of Yeshiva University. Located in the Price Center/Block Research Pavilion, the laboratory was named in appreciation of a $1 million gift from the Helen and Irving Spatz Foundation. Winfried Edelmann, Ph.D., the laboratory’s first director, was also on hand for the dedication ceremony. Dr. Edelmann is a professor of cell biology and director of the Gene Targeting Facility of the Albert Einstein Cancer Center. He studies the biological roles of mammalian genes that are associated with cancer predisposition syndromes. He and his team have helped advance understanding of how mutations in DNA mismatch repair genes can make people susceptible to certain types of cancer. “This is an exciting time for medicine and for Einstein,” said Dean Spiegel. “As Dr. Edelmann and his colleagues continue their pioneering efforts to uncover the biological origins of colon and other gastrointestinal cancers, I am confident they will bring credit to the memories of Janet and Martin’s beloved parents.”

The John D. and Catherine T. MacArthur Foundation has awarded a multiyear grant totaling $750,000 to support a research project led by Earle Chambers, Ph.D., M.P.H., assistant professor in the departments of family and social medicine and of epidemiology and population health. The study will examine subsidized housing and its influence on the health of Latino youth in the Bronx. Previous research has found that people living in poor neighborhoods are at risk for cardiovascular problems. The findings of Dr. Chambers and his colleagues may influence housing policy and help reduce racial and ethnic health disparities.

Visiting Committees Created

Albert Einstein College of Medicine has established visiting committees that will connect Einstein researchers with supporters who have a personal interest in their work. Committee members will learn about new and exciting research developments, and Einstein scientists will be able to share their work with an appreciative audience. Researchers will meet with their committees two times a year, communicate by e-mail and conference call, and publish a newsletter twice annually. Visiting committees taking shape in 2010 will focus on diabetes, cancer and cardiovascular disease. The Diabetes Visiting Committee was the first to be launched, with an inaugural meeting in Manhattan in January. The group is led by Jeffrey E. Pessin, Ph.D., director of Einstein’s Diabetes Research Center and the holder of the Judy R. & Alfred A. Rosenberg Endowed Professorial Chair in Diabetes Research.

If you are interested in helping to advance research in diabetes, cancer or cardiovascular disease and would like to learn more about visiting committees at Einstein, please contact Glenn Miller, associate dean for institutional advancement, at 718.430.2411 or glenn.miller@einstein.yu.edu.
New Women’s Division Initiative Supports Cancer Research

In fall 2009, the Einstein National Women’s Division launched a new $3 million initiative to support research in women’s health and cancers. The division is partnering with the Albert Einstein Cancer Center to advance cutting-edge studies focusing on breast, ovarian, cervical and uterine cancers and is hosting a series of events to raise funds for its new initiative.

A crowd of 300 children and parents turned out on January 10 for the Westchester/Fairfield chapter’s annual Family Day Winter Carnival, held at The Place To Be, in Ardsley, NY. Michele Bertschneider, Alyson Lyon and Tati Stein served as event chairs. On April 27, the division held its 56th Annual Spirit of Achievement Luncheon at the Pierre Hotel in New York City. Honorees included cosmetics icon Adrien Arpel, NBC Today show host Hoda Kotb, luxury fur designer Dennis Bassos, fashion designer Naeem Khan, Lincoln Center fashion director Stephanie Winston Wolkoff and Sylvia Waserthiel-smoller, M.D., head of the division of epidemiology and principal investigator in the Women’s Health Initiative at Einstein. MSNBC host Willie Geist donated his time as emcee for the second consecutive year.

SAVE THE DATE!

Sunday, August 8
21st Annual Hamptons Family Day Wild, Wild West Carnival Rose School, Bridgehampton, NY

For more information, please contact Janis Brooks, director of the National Women’s Division, at 718.430.2818 or janis.brooks@einstein.yu.edu.

Men’s Division Research Wing Is Dedicated

A llen M. Spiegel, M.D., the Marilyn and Stanley M. Katz Dean, joined members of the executive board of the Einstein Men’s Division on December 10 to formally dedicate the Men’s Division Research Wing in the Michael F. Price Center for Generic and Translational Medicine/Harold and Muriel Block Research Pavilion. They unveiled a plaque marking the entrance to the wing, which will house laboratories for stem cell and regenerative medicine research. Also attending the dedication were Harry Shammun, M.D., associate dean for clinical and translational research, and Einstein faculty members involved in the Men’s Division Research Scholars Program—the division’s current fundraising initiative. Men’s Division Chairman Peter Gatof and former Chairman Jack Somer and Adam Gottbetter led the division’s successful $5 million initiative to fund the new wing of laboratories.

From left: Men’s Division Chairman Peter Gatof, Dean Allen M. Spiegel and the division’s immediate past Chairman, Jack Somer, collaborate on the ribbon-cutting portion of the dedication ceremony for the Men’s Division Research Wing, located on the first floor of the Price Center/Block Research Pavilion.

To learn more about the Einstein Men’s Division or the Men’s Division Research Scholars Program, please contact Patricia Margulies at 718.430.4170 or patricia.margulies@einstein.yu.edu.

Einstein’s Philanthropic Band of Brothers

The Men’s Division of Albert Einstein College of Medicine was formed in 1961 by a group of businessmen-philanthropists. They were dedicated to supporting a fledgling medical school destined to become one of the nation’s premier centers for biomedical research and medical education. Over the years, the Men’s Division—whose membership now numbers over 1,000—has encouraged the growth and development of the College of Medicine, providing an invaluable source of volunteer leadership and continuity.

The division carries out its commitment to Einstein by hosting a variety of fundraising events and educational programs throughout the year. Two flagship events are held each year: Bronx Night, spotlighting Einstein’s close relationship with the Bronx community, and the Men’s Division Annual Golf & Tennis Tournament and Dinner.

SAVE THE DATE!

On Monday, June 14, the Men’s Division of Albert Einstein College of Medicine will host its Annual Golf & Tennis Tournament and Dinner at Quaker Ridge Golf Club in Scarsdale, NY. This year’s honoree is Martin Luskin, a longtime Men’s Division member who currently serves as treasurer and as an executive board member. The event will benefit the Men’s Division Research Scholars Program. For more information, please contact Patricia Margulies, director of events, at 718.430.4170 or patricia.margulies@einstein.yu.edu.

Einstein’s Philanthropic Band of Brothers

The Men’s Division of Albert Einstein College of Medicine was formed in 1961 by a group of businessmen-philanthropists. They were dedicated to supporting a fledgling medical school destined to become one of the nation’s premier centers for biomedical research and medical education. Over the years, the Men’s Division—whose membership now numbers over 1,000—has encouraged the growth and development of the College of Medicine, providing an invaluable source of volunteer leadership and continuity.

The division carries out its commitment to Einstein by hosting a variety of fundraising events and educational programs throughout the year. Two flagship events are held each year: Bronx Night, spotlighting Einstein’s close relationship with the Bronx community, and the Men’s Division Annual Golf & Tennis Tournament and Dinner.

SAVE THE DATE!

On Monday, June 14, the Men’s Division of Albert Einstein College of Medicine will host its Annual Golf & Tennis Tournament and Dinner at Quaker Ridge Golf Club in Scarsdale, NY. This year’s honoree is Martin Luskin, a longtime Men’s Division member who currently serves as treasurer and as an executive board member. The event will benefit the Men’s Division Research Scholars Program. For more information, please contact Patricia Margulies, director of events, at 718.430.4170 or patricia.margulies@einstein.yu.edu.

Einstein’s Philanthropic Band of Brothers

The Men’s Division of Albert Einstein College of Medicine was formed in 1961 by a group of businessmen-philanthropists. They were dedicated to supporting a fledgling medical school destined to become one of the nation’s premier centers for biomedical research and medical education. Over the years, the Men’s Division—whose membership now numbers over 1,000—has encouraged the growth and development of the College of Medicine, providing an invaluable source of volunteer leadership and continuity.

The division carries out its commitment to Einstein by hosting a variety of fundraising events and educational programs throughout the year. Two flagship events are held each year: Bronx Night, spotlighting Einstein’s close relationship with the Bronx community, and the Men’s Division Annual Golf & Tennis Tournament and Dinner.

SAVE THE DATE!

On Monday, June 14, the Men’s Division of Albert Einstein College of Medicine will host its Annual Golf & Tennis Tournament and Dinner at Quaker Ridge Golf Club in Scarsdale, NY. This year’s honoree is Martin Luskin, a longtime Men’s Division member who currently serves as treasurer and as an executive board member. The event will benefit the Men’s Division Research Scholars Program. For more information, please contact Patricia Margulies, director of events, at 718.430.4170 or patricia.margulies@einstein.yu.edu.

Einstein’s Philanthropic Band of Brothers

The Men’s Division of Albert Einstein College of Medicine was formed in 1961 by a group of businessmen-philanthropists. They were dedicated to supporting a fledgling medical school destined to become one of the nation’s premier centers for biomedical research and medical education. Over the years, the Men’s Division—whose membership now numbers over 1,000—has encouraged the growth and development of the College of Medicine, providing an invaluable source of volunteer leadership and continuity.

The division carries out its commitment to Einstein by hosting a variety of fundraising events and educational programs throughout the year. Two flagship events are held each year: Bronx Night, spotlighting Einstein’s close relationship with the Bronx community, and the Men’s Division Annual Golf & Tennis Tournament and Dinner.

SAVE THE DATE!

On Monday, June 14, the Men’s Division of Albert Einstein College of Medicine will host its Annual Golf & Tennis Tournament and Dinner at Quaker Ridge Golf Club in Scarsdale, NY. This year’s honoree is Martin Luskin, a longtime Men’s Division member who currently serves as treasurer and as an executive board member. The event will benefit the Men’s Division Research Scholars Program. For more information, please contact Patricia Margulies, director of events, at 718.430.4170 or patricia.margulies@einstein.yu.edu.

Einstein’s Philanthropic Band of Brothers

The Men’s Division of Albert Einstein College of Medicine was formed in 1961 by a group of businessmen-philanthropists. They were dedicated to supporting a fledgling medical school destined to become one of the nation’s premier centers for biomedical research and medical education. Over the years, the Men’s Division—whose membership now numbers over 1,000—has encouraged the growth and development of the College of Medicine, providing an invaluable source of volunteer leadership and continuity.

The division carries out its commitment to Einstein by hosting a variety of fundraising events and educational programs throughout the year. Two flagship events are held each year: Bronx Night, spotlighting Einstein’s close relationship with the Bronx community, and the Men’s Division Annual Golf & Tennis Tournament and Dinner.

SAVE THE DATE!

On Monday, June 14, the Men’s Division of Albert Einstein College of Medicine will host its Annual Golf & Tennis Tournament and Dinner at Quaker Ridge Golf Club in Scarsdale, NY. This year’s honoree is Martin Luskin, a longtime Men’s Division member who currently serves as treasurer and as an executive board member. The event will benefit the Men’s Division Research Scholars Program. For more information, please contact Patricia Margulies, director of events, at 718.430.4170 or patricia.margulies@einstein.yu.edu.

Einstein’s Philanthropic Band of Brothers

The Men’s Division of Albert Einstein College of Medicine was formed in 1961 by a group of businessmen-philanthropists. They were dedicated to supporting a fledgling medical school destined to become one of the nation’s premier centers for biomedical research and medical education. Over the years, the Men’s Division—whose membership now numbers over 1,000—has encouraged the growth and development of the College of Medicine, providing an invaluable source of volunteer leadership and continuity.

The division carries out its commitment to Einstein by hosting a variety of fundraising events and educational programs throughout the year. Two flagship events are held each year: Bronx Night, spotlighting Einstein’s close relationship with the Bronx community, and the Men’s Division Annual Golf & Tennis Tournament and Dinner.

SAVE THE DATE!

On Monday, June 14, the Men’s Division of Albert Einstein College of Medicine will host its Annual Golf & Tennis Tournament and Dinner at Quaker Ridge Golf Club in Scarsdale, NY. This year’s honoree is Martin Luskin, a longtime Men’s Division member who currently serves as treasurer and as an executive board member. The event will benefit the Men’s Division Research Scholars Program. For more information, please contact Patricia Margulies, director of events, at 718.430.4170 or patricia.margulies@einstein.yu.edu.

Einstein’s Philanthropic Band of Brothers

The Men’s Division of Albert Einstein College of Medicine was formed in 1961 by a group of businessmen-philanthropists. They were dedicated to supporting a fledgling medical school destined to become one of the nation’s premier centers for biomedical research and medical education. Over the years, the Men’s Division—whose membership now numbers over 1,000—has encouraged the growth and development of the College of Medicine, providing an invaluable source of volunteer leadership and continuity.

The division carries out its commitment to Einstein by hosting a variety of fundraising events and educational programs throughout the year. Two flagship events are held each year: Bronx Night, spotlighting Einstein’s close relationship with the Bronx community, and the Men’s Division Annual Golf & Tennis Tournament and Dinner.
Linda would be almost 50 now. The Spring 1963 issue of Pulse (now called Einstein magazine) noted that the 2-1/2-year-old girl had been referred to Abraham Rudolph, M.D., at left, head of Einstein’s pediatric cardiology division, after tests showed a “large defect between heart chambers.” Reached at the University of California at San Francisco, where he served as chairman of pediatrics from 1986 to 1991, Dr. Rudolph vividly remembers Linda (“a very cute girl with lovely parents”) and her cardiac diagnosis (tetralogy of Fallot). “We decided to delay any surgery until she was older,” he recalls, “when an optimal result would be more likely.”

Help us transform human health.
Be part of the Einstein Legacy.

Your bequest will help Einstein continue to provide outstanding medical education and research that holds the key to lifesaving treatments and potential cures for disease.

And you’ll have the satisfaction of knowing you helped Einstein build a healthier future for generations to come.

To learn more about making a bequest in your will and the advantages of other tax-favored legacy gifts to Einstein, please contact:

Glenn Miller
Associate Dean for Institutional Advancement
718.430.2411 or glenn.miller@einstein.yu.edu

Henry Rubin, J.D.
Senior Director of Planned Giving
917.326.4959 or hrubin@yu.edu
Aftershocks of Haiti Earthquake Reach Einstein Community

Einstein has responded to the devastating January 12 earthquake as if those suffering its effects were next-door neighbors. See page 4.

VISIT US ON THE WEB!
On our website, readers can keep up with what’s happening at Einstein: research and education news; features; multimedia offerings; access to all our electronic and print publications—and much more. You can also review news and updates that are specifically targeted toward alumni, donors, faculty and students. When you visit our website, you’ll join the more than 3.5 million people who click annually on www.einstein.yu.edu.